SANDIA REPORT

SAND
Unlimited Release
Printed

Uniprocessor Performance Analysis of a
Representative Workload of Sandia
National Laboratories' Scientific
Applications

CHARLES LAVERTY

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy’s
National Nuclear Security Administration under Contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

@ Sandia National Laboratories

Issued by Sandia National Laboratories, operated for the United States Department of Energy by
Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any of
their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors. The
views and opinions expressed herein do not necessarily state or reflect those of the United States
Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865)576-8401

Facsimile: (865)576-5728

E-Mail: reports@adonis.osti.gov
Online ordering: http://www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800)553-6847

Facsimile: (703)605-6900

E-Mail: orders@ntis.fedworld.gov

Online order: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

@ Sandia National Laboratories

UNIPROCESSOR PERFORMANCE ANALYSIS OF A REPRESENTATIVE
WORKLOAD OF SANDIA NATIONAL LABORATORIES’
SCIENTIFIC APPLICATIONS
BY

CHARLES LAVERTY, B.S.

A thesis submitted to the Graduate School
in partial fulfilment of the requirements
for the degree

Master of Science in Electrical Engineering

New Mexico State University
Las Cruces, New Mexico

June 2005

“Uniprocessor Performance Analysis of a Representative Workload of Sandia
National Laboratories’ Scientific Applications,” a thesis prepared by Charles
David Laverty in partial fulfillment of the requirements for the degree, Master
of Science in Electrical Engineering, has been approved and accepted by the

following:

Linda Lacey
Dean of the Graduate School

Jeanine Cook
Chair of the Examining Committee

Date

Committee in charge:
Dr. Jeanine Cook, Chair
Dr. Erik DeBenedictis
Norris Green

Dr. Steven Stochaj

VITA

February 26, 1980 Born in Taos, New Mexico

1998 Graduated from Cimarron High School,
Cimarron, New Mexico

1998-2002 B.S, New Mexico State University, New Mexico

2002-2005 Graduate Assistant

College of Engineering
New Mexico State University

Field of Study

Major Field: Electrical Engineering (Computer Engineering)

ABSTRACT
UNIPROCESSOR PERFORMANCE ANALYSIS OF A REPRESENTATIVE
WORKLOAD OF SANDIA NATIONAL LABORATORIES’

SCIENTIFIC APPLICATIONS

Master of Science in Electrical Engineering
New Mexico State University
Las Cruces, New Mexico, 2005

Dr. Jeanine Cook, Chair

Throughout the last decade computer performance analysis has
become absolutely necessary to maximum performance of some workloads.
Sandia National Laboratories (SNL) located in Albuquerque, New Mexico is
no different in that to achieve maximum performance of large scientific,
parallel workloads performance analysis is needed at the uni-processor level.
A representative workload has been chosen as the basis of a computer
performance study to determine optimal processor characteristics in order to
better specify the next generation of supercomputers. Cube3, a finite element
test problem developed at SNL is a representative workload of their scientific
workloads. This workload has been studied at the uni-processor level to
understand characteristics in the microarchitecture that will lead to the overall

performance improvement at the multi-processor level. The goal of studying

this workload at the uni-processor level is to build a performance prediction
model that will be integrated into a multi-processor performance model which
is currently being developed at SNL. Through the use of performance
counters on the Itanium 2 microarchitecture, performance statistics are
studied to determine bottlenecks in the microarchitecture and/or changes in
the application code that will maximize performance. From source code
analysis a performance degrading loop kernel was identified and through the
use of compiler optimizations a performance gain of around 20% was

achieved.

TABLE OF CONTENTS

LIST OF TABLES ...t e e viii
LIST OF FIGURES ..ot iX
1. INTRODUCTIONttt eeee e e e nnneeea e 1
2. BACKGROUND.......coiiiiiiiie et e e 2
2.1, Computer Performance AnalySiS............cccccuuumiiimmimenniiiiiiiinnns 2
2.2, Intel® anium 2@eeuemmiiiiii 7
2.21. Performance Monitoring Unit ..., 10
2.3, PERFMON ...t 11
2.4, VEUNE ... 14
2.5, THIINOS .eeiiiiiiiii e 14
2.6. Finite Element Methoduuiiiiiiiiiiiiiiiiis 16
2.6.1. OVEIVIEW ..coeiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeee ettt 16
2.6.2. ASSEMDIY ...ooiiiiiiiiiiiiiii 19
2.6.3. Preconditioning/Solution ..., 23
2.6.4. Finite Element Example ... 25
2.7. Sparse MatriCesccoeiiiiieiiiie e 36
2.7.1. Storage Schemes...........cccevvviiiiiiiiiiiiiiiiiiiiiiiieieeeeeeeee 36
3. RELATED WORK.....ooi et 40
3.1. Performance of Sparse Matrices...........ccoeoeeviiiiiiiiiiieeieeeeeee, 40
3.2. Finite Element Research............cccccuuiiiiiiiiiiiiiiiie 41
3.3. Itanium 2 Performance Studies.............cccccuiiiiiiiiiiiiiiiiiiiinnnns 43

Vi

4. THESIS PROBLEMcoiiiiiiiiieeeee e 44

5. WORKLOAD ...ttt e e e a e 45
5.1. The “Cube3” Application..........ccoeveeeiiiiiiiie e 45
6. METHODOLOGYooiiiiiiiiiieeeiiee e a e e e e e e 49
7. RESULTS ..ottt e e e e 54
7.1, Problem SiZe..........uuuuiiiiiiiiiii 54
7.2. Runtime Description..........ccoooeiieiiiieiiiiiiie e 57
7.21. Cube3 Phases........cccccuvviiiiiiiiiiiiiiiiiiiiiiiiiiieieieeeeeeeeeeeeee 57
7.2.2. Varying The Shape of Cube3 Problem.............ccccccceeen. 59
7.2.3. Varying Storage Techniques..........cccccvvvvviiiiiiiiiiiiiinnnnnn. 62
7.24. Runtime Statisticscoovvviiiiiiiiiiiiiiiiii 63
7.3. Bottleneck ANalysisuuuiiiiiiiiiiiiiiiiie 66
7.4. Solution TeChNIQUES..........uiiiiiieiieeeice e 68
741, Varying SOIVEIScooviiiiiiiiiiiiiiiiieieeeeeeeeeeeeeeeeeeeeeeeeeeeeee 69
7.4.2. Vary Preconditioners...........ccoouvviieiiiiiiiiiiiiiiiiiiiiiiiieeeeeee 70
7.5. Compiler Optimizationscooveeiiiiiiiiee e, 73
7.5.1. Utilizing different Compilerscccccovviiiiiiiiiiiiiiiiinnnnnn. 73
7.5.2. Loop Optimizationsouueiiiiiiiiiiece e 75
8. CONCLUSION ... 78
9. FUTURE WORK ... 80
APPENDIX ..ttt a e 82
REFERENCES it e e 92

vii

LIST OF TABLES

1. Itanium 2 Cache Configurations ... 9

2. Example Matrix for Sparse Storage Schemes..........ccccccceeeiiiiinnnnn. 37
3. Example Sparse Matrix Coordinate Format Storage....................... 37
4. Example Sparse Matrix CRS Format Storage.........ccccoeeevvvvvevennnnnnn. 38
5. Example VBR MatriXcooveiiiiiiiiiee e 38
6. Example VBR Storage MatriX.............uuuuuumimmmimiiiiiiiiiiiiiiiiiiiiiiiiiennes 39
7. Block Representation of MatriXcoooviiiiiiiiiiiiiciceee e 39
8. Itanium 2 Stall CoUNtErs............uuuiiiiiiiiiiiiiiis 52
9. Problem Sizes for Figure 20..............uuuuiiiiiiiiiiiiiiiiiiiiiiiis 56
10.Crs Cache StatistiCScooeeeeeeeeeeeeeeee, 65
11.Crs Stall SOUICE ... 66
12.Crs Execution Stage StallS..........ooooooiiieiii 67
13.Crs Global Stall CouNtscoooeeeeeeeeeeee 68
14.Crs Major Stall Contributions..........ccoooeeieiiii, 68

viii

LIST OF FIGURES

1. Processor Memory Hierarchy...........cccoooi
2. Itanium 2 Processor Pipeline.........ccooovviiiiiiiiiiiieeeeeeecie e
3. Itanium 2 Microarchitecture Features..............ccccvviiiiiiiiiiiiiiiiiiinnns
4. PEMON USAQEcoi oo
5. Sample Output of PFMON ..o
6. EIemMent TYPESuuiiiiiiiiiiiiiiiiii e
7. Assembly Example Problem ...
8. CoNNECLIVItY LIStuuuuiiiiiiiiiiiiiiiiiiiiii e
9. Element ContribUtioNS.............uuuiiiiiiiiiiiiis
10.ASSEMDIY ProCeSS.. ..o i
11.Beam Representation and Matrix Graph............ocoieiiieiiieieeeeiinnnnnn.
12.Plate Representation and Matrix Graphccccccceiiiiiiiiiiiiiiinnnnn.
13.C0SMOS EXaMPIecooeiie e
14.CosmOS Elements ...
15.Cosmos Final Solution ...
16.Thin Plate Example ...
17.Thin Plate Nodal Coordinatescooooieiiiiiiiiieee
18.Hexahedral Element..........ooooiiiiiiiii
19.3x3x1 Hexahedral Elements ...,
20.Vary Width CRS -IPC, L2&L3 Cache Statscccccceeviiiiiiieieenn.n.

21.Cube3 Call Grapheeueieiiiiiiii

12

13

17

20

20

21

21

23

23

25

25

26

27

30

46

47

56

o7

22.55x55x1 Interval IPC............evviiiiiiiinnes
23.Call graph Mapping to Interval IPC
24.1x45000 Interval IPC............cuvvviiiiinnnne
25.300x1x1 Interval IPC...........ovvviiiiiiiinnee

26.Vary Shapes - Interval IPC...................

27.Crs and Vbr Methods 55x55x1 with Gmres Solver.........ccccvveeeen....

28.Crs Instruction MiXoovveviiiiiiiieeiein.

29.Crs 55x55x1 Varying Solver Methods ..

30.Crs 55x55x1 Varying Preconditioners with CG solver.....................

31.Crs 55x55x1 Varying Gee & lcc Compilers......oooovvvveeeiiiicciiieeeeeeee,

32.Gcc with Gmres Solver vs. Loop-Unrolling...............eeeveieiiiiiiiiiiennns

33.Gcc with CG Solver vs. Loop-Unrolling

58

59

60

60

61

63

64

71

72

74

77

77

1. INTRODUCTION

High performance computing has always been an integral part of our
National Laboratories. As of November 2004, out of one hundred of the
fastest computers in the world around twenty percent of them are located on
National Laboratory grounds [1]. The workloads used on these
supercomputers are scientific in nature, simulating various scientific
phenomena such as projectile collisions and nuclear detonation, many of
which the government uses to simulate physical problems that are not
feasible to test in the real-world. Microarchitecture improvements can help to
reduce the extensive runtime of these simulations. Performance analysis of
these workloads is used to determine where bottlenecks occur in various
microarchitecture components and/or where improvements to the application
code will result in decreased execution time. From the various methods of
performance analysis a study has been conducted on a representative
workload of SNL’s scientific applications. This study will aid in understanding
the workload behavior throughout all phases of its execution and aid in
identifying the causes poor performance, hopefully generating incite that will
lead to changes in hardware or software, that enables speedup of these types
of applications. These studies will provide the necessary information to
enable generation of an analytic performance model at a uni-processor level
which will be implemented in another multiprocessor model to help in the

decision of future computing efforts at SNL.

2. BACKGROUND

A few concepts need to be understood in order to understand the
performance of this representative workload at SNL. This section discusses
the background concepts needed to understand the results presented in
Section 6. This section is organized by presenting a short background to
computer performance analysis in Section 2.1. Then a background of the
microarchitecture of the Intel ltanium 2 architecture, which was the
architecture that this analysis was conducted on, will be presented in 2.2.
Section 2.2 and 2.3 will discuss some of the tools used to collect
miscellaneous statistics in the performance study. Finally in Sections 2.5-2.7
discussion on background of the actual workload will be presented in order to
help understand its performance characteristics.
2.1. Computer Performance Analysis

Computer performance analysis is the art of studying various
workloads on different architectures to understand what can be done to
maximize the performance of the workload on a specific architecture or to
understand what architecture executes the workload the fastest and why. The
main statistics that are studied for computer performance analysis are
instructions per cycle (IPC) or cycles per instruction (CPI), execution time, as
well as cache statistics, and stall statistics.

IPC is the number of instructions completed per cycle averaged over

the entire application execution. For example, if two different processors

running the same application complete one instruction per cycle (max IPC per
machine is one) and if the workload takes 1000 instructions to complete and
on one processor it takes 2000 cycles (amount of time based on clock
frequency) and takes 1000 cycles on another machine their IPC’s are 0.5 and
1, respectfully. This states that the second processor is better due to the fact
that it utilizes its architecture better even though the execution time (clock
time) could be slower. So the combination of these two statistics is a major
determination of how a processor performs.

Modern day microarchitectures have the ability to complete more than
one instruction per cycle due to various architecture innovations such as the
addition of multiple pipelines. Pipelines allow architectures the ability to break-
up the execution time of an instruction into smaller pieces allowing for faster
clock frequencies and for various pieces of different instructions to be in the
pipeline at a single time. Performance degradation of these pipelined
architectures comes from stalls in the pipeline, which occurs mainly when
data is being brought in from disk or memory which is much slower than the
processor. That is why cache statistics are also important in studying
performance of architectures. Caches are small fast memory that help speed
up the data access of disks or memory. The memory hierarchy of a
contemporary computer is shown in Figure 1 where the registers are the

closest to the CPU and the secondary storage is further away from the CPU.

Fagisl ers

Cachs

Bl we mory (RARL BOM)

Secondey storgs (head disk, Roppy disk, magnetuc bays)

Figure 1 Processor Memory Hierarchy
The hierarchy starts with the slower secondary storage which runs at a speed
of around 8ms and a bandwidth of around 20MB/sec [2]. The next level, main
memory, runs at a speed of around 50ns and a bandwidth of 100MB/sec. The
faster on-chip memories called cache run at a speed of a couple of
nanoseconds and have a bandwidth in the gigahertz range. The highest level
of the memory is the processor registers which run the fastest at around sub-
nanosecond and at gigahertz bandwidth. The slower memory also is the
cheapest as compared to the expensive on-chip registers and cache.

Many processors try to conceal the performance degradation
contributed by the slow access time of caches by hiding the latency involved
with a memory access. This is achieved by the use of processors that
execute instructions out-of-order. This allows instructions following an
instruction that is waiting for data to be computed while that instruction in
waiting. When the instruction has its data from memory then the instructions

are reassembled back to their program order. The key factor to hiding the

4

latency of a memory access comes down to the available parallelism within
an application. In other words, if an instruction can not execute out-of-order
then it is dependent on a previous instruction and if that previous instruction
can not complete because it is waiting for one of its operands to be brought in
from memory it also has to wait. There are always limits to the parallelism that
can be extracted within an application due to the nature of its implementation.
The use of various performance analysis techniques enables
designers to optimize the hardware design to excel performance of some
workloads. There are three main approaches to performance analysis:
Analytic methods, Simulation methods, and Direct Measurement methods.
Analytic methods are techniques by which the behavior of the
microarchitecture components is represented by mathematical equations or
queuing models. The advantage of using analytic modeling is the time to
achieve an answer is very small but it is very difficult to represent the
behaviors and interactions of complex structures of modern day architectures
because of their complexity. So the accuracy of such models is very limited.
Another method of performance evaluation is through the use of
simulators. Simulators are very useful in performance analysis due to their
robustness. However, a simulator is very difficult to implement because it is
modeling a real world machine through software, making the development
time costly. The accuracy of a simulator is always a concern because it is

very difficult to model a processor through software. Most simulators provide

the designer with many performance metrics and simulator code can be
modified to incorporate any changes to the microarchitecture that the
designer desires such as modifying the cache organizations, memory
bandwidth, and queue sizes. Simulators have one major drawback and that is
the execution time. The runtime of an application on a cycle-accurate
simulator usually takes 100 to 1000 times the native applications execution
time.

The last of the performance analysis tools is direct measurement of
physical systems. Through the use of on-chip hardware counters
performance data can be collected during native execution of an application
as well as during operating system activity. The problem with hardware
counters is that in most modern computers processor real estate is limited
and thus there are typically only four to eight counters that enable the study of
an application, which leads to very limited performance studies. Also, there
are some variations between runs of the same application due to overhead
involved with the operating system and cache activity but normally is less
than 0.5% error between runs.

In this paper the majority of the performance analysis is done through
the use of hardware performance counters. Intel’s® ltanium® 2
microarchitecture provides one of the most extensive performance monitoring
units for capturing performance data. The next section provides an overview

of this architecture.

2.2. Intel® Itanium 2®

The Itanium 2 microarchitecture was a collaborative effort between HP
and Intel and was released in July 2002. It is a 64-bit, VLIW (very long
instruction word) architecture executing up to six instructions at a time. The
VLIW in the Itanium 2, consists of groups of three instructions; these groups
are called bundles. The three instructions in a bundle are independent and
can, therefore, execute in parallel on the multiple functional units in the
Itanium 2. It has four floating-point units, two capable of executing one FMA
per cycle while the other two perform other floating-point operations such as
comparisons, but only two floating-point operations can be executed in
parallel [3] . Also the Itanium 2 has two integer, three branch, and four
memory execution units in its parallel execution pipelines, for a total of 12
functional units. The ltanium 2’s pipeline is shown in Figure 2. Each
instruction bundle is encoded by the type of resource that can execute in
parallel (i.e. memory, floating-point, and branch instructions comprise a MFB
bundle). The Itanium 2 issues two bundles per cycle to its in-order core.

Through the use of VLIW technology, the Itanium 2 does not need a
complex out-of-order pipeline to achieve performance improvement, allowing
the architecture real estate to be used for a more complex memory system
and a large set of architectural registers. The VLIW places much
responsibility on the compiler to achieve the maximum instruction throughput.

The microarchitecture highlights are shown in Figure 3 [4]. The cache

configurations of the Itanium 2 processor used in our studies are listed in

Table 1. The cache hierarchy of the Itanium 2 populates most of the area on

the chip since the processor core is smaller for an in-order processor

compared to out-of-order cores normally used in today’s microcomputers.

Overall, the Itanium 2 is a good choice for running the performance analysis

of this representative application of SNL’s scientific applications because of

the large caches, the high performance of scientific applications cited in

various studies, and the large number of performance metrics that the

performance monitoring unit allows for collection which is discussed in the

next section.

Branch prediction

IP-
relative
pradiction

|P-relative addrass
and return stack buffer

Pattern
history

Register
stack angine

Scoreboard and
hazard detection

Maxt
address

_________________________________ [

L;F ALAT | LiD H Imelgelr
TLB 32 entries 'Ja?lm ALL:I\'b]

| Hardware
page
L3 walker
caLcahe | Cgﬁ:g —
syslem
intarface

ROT Instruction rotation

REM Rename (for registar stack

ALAT Advanced-load address table
TLE Translation look-aside bulfer
IPG Instruction pointer genaration and fatch

EXP Instruction template decode, expand, and disperse

REG Register file read
EXE ALU exacution
DET Exception detection

WRE Write back

and rotating registers) and decode

FPx Floaling-point pipa stage

Figure 2 Itanium 2 Processor Pipeline

8

Pipaling
stages
L] Instruction- |A-32
Instruction straaming " E
cache [buffer enging . =
L2
* * * LB Front
"""""""""""""""""""""""" - end
Instruction bufter: s
8 bundles (24 instructions) o
_* (
Instruction decode and dispersal a
MM MM 1] FlF] [e]e]e i
Integer FP =
renamer = raname b
Integer FP = @
ragistar file registar =
file 5 &
M, o S . S ml =
F | =w Back
‘ |\;|J Branch £ &8 7 end
Integer
ST Iuttimedial " T T T TTTTTTTT] B B
(€) I
8 Ed
______ e e ' =01 -
[=1
-
£ e
3 =2
________________________________ [S -
=
o
w

Table 1. Features of the ltanium 2 processor.

Design
Freguency 1 GHz
Pipe stages 8in-order

|ssuefretire
Execution units

Ginstructions
2 integer, 4 memory, 3 branch, 2 floating-point

Silicon

Technology 180 nm

Caore 40 million transistors

L3 cache 180 million transistors

Size 421 mm?

Caches

LT instruction Size 168 Kbytes
Latency 1 cycle
Protection Parity

L1 data Size 16 Kbytes
Latency 1 cycle
Protection Parity

L2 Size 256 Kbytes
Latency B, 7, or 9+ cycles
Protection Parity or ECC*

L3 Size 3 Mbytes
Latency 12+ cycles
Protection ECC

Benchmark results

Spec CPUZ2000 score 810

Spec FP2000 score 1.431

TPCC (32-way) 433,107 transactions per minute

Stream 3,700 Ghytes/s

Linpack 10K**

13.94 Gflops

* ECC: error-correcting code

** Performed with four processors

Figure 3 Itanium 2 Microarchitecture Features

Table 1 Itanium 2 Cache Configurations

L1D L2 L3
Access Time 1 5+ 12+
Size 16 KB 256 KB 1.5MB
Line Size 64 bytes 128 bytes | 128 bytes
Number of Lines 256 2048 24576
Associative Sets 4 8 12
Sets 64 256 2048
Write- Write- Write-
Update Policy Through Back Back
Banks 8 "groups" 16 1
Not Not Not
Line Recently Recently Recently
Replacement Used Used Used

9

2.2.1. Performance Monitoring Unit

The Itanium 2’s performance monitoring unit (PMU) is an important
component of the architecture that allows a developer to tune their code to
achieve maximum performance through the use of hardware performance
counters. The PMU has the ability to track counts of around 500 different
metrics which are collected on four different hardware counters. The metrics
that can be counted range from simple memory statistics (misses, references,
etc.) to branch miss-prediction rates to complex opcode matching (shown
below). The Itanium 2’s PMU is one of the most complex ever implemented
which influences our choice of this architecture for performance analysis. One
advantage to using the Itanium’s PMU is its bubble counters that can be used
to understand the major contributions of all stalls throughout application
execution. A detailed explanation of the bubble analysis is included in Section
6.3. The events that the PMU can monitor can be broken down into various
categories [5]. These categories are:

. Basic Events: Clock cycles, retired instructions

« Instruction Dispersal Events: Instruction decode and issue

« Instruction Execution Events: Instruction execution, data and
control speculation, and memory operations.

. Stall Events: Stall and execution cycle breakdowns.

. Branch Events: Branch prediction.

« Memory Hierarchy: Instruction and data caches.

. System Events: Operating system monitors.

. TLB Events: Instruction and data TLB's.

. System Bus Events: Events on the system bus
10

« RSE Events: Register Stack Engine.

2.3. PERFMON

There are several software interfaces to the performance-monitoring
unit including HP’s PERFMON and Intel’'s Vtune. We chose to use both
although the majority of the statistics were collected using PERFMON
because of its ease of use and its ability to batch process the workload using
the PERFMON software. PERFMON was a project developed by Hewlett
Packard as a standard kernel interface for the Performance Monitoring unit of
the Itanium and Itanium 2 architectures [6]. The software consists of a library
called libpfm and a monitoring tool called pfmon. PERFMON provides full
access to the PMU of the Itanium family of architectures. It provides the ability
to monitor system or per-process sessions, as well as providing the capability
of sampling events or just cumulative counts of the available metrics.

Pfmon has many features in which a user can customize performance
counts. We used pfmon version 3.0 on our system. The basic usage of the
pfmon command is shown in Figure 4. In this example, two metrics are
counted, CPU cycles and instructions retired with the results of each being
436,368 and 513,437, respectively. With performance counters there is
always a deviation from one run to another. For the command shown in
Figure 4 a total of ten runs were completed and the percent error in
instructions was less than 0.01 percent; for the CPU cycles the max percent

error was around 0.65.

11

% pfmon -e cpu _cycles, IL64 inst Retired 1s fdev/null
Jdev/null
136368 CPUO_CYCLES
513437 Ihed TN3T RETIRED

Figure 4 PFMON Usage

In Figure 4 the —e specifies the event to be counted (up to four can be
counted at a time) and Is /dev/null is the command to be monitored. Through
the use of -header the output will include output useful information about your
system and the performance session started by pfmon. A sample output
using the —header option is seen in Figure 5. Some of the key information
shown in Figure 5 is the cache hierarchy configuration of the system as well
as how the output data of the sampling session is organized.

Sampling events can be very useful information when studying a
workload because you can determine execution phases within the program
that cause performance degradation. Using pfmon, a sampling period in
which two statistics are used can be specified, one event is used to choose
when to sample the other. For example, the user can specify to sample
CPU_CYCLES every one hundred thousand IA64_INST_RETIRED. From the
number of cycles and the number of instructions, instructions per cycle (IPC)
can be computed. IPC is a composite metric that is used to measure overall
performance of a micro-architecture, which was discussed in Section 2.1.
Figure 5 also shows an example of how to implement sampling (look for

‘command”). Plots of such interval data will be shown in Section 6. The PMU

12

of the Itanium 2 allows for various other software to interface with it such as

Vtune which is described in the next section.

date: Monm Mar 7 15:01:3% 2005

hostname: klipsch

kernel wersiom: Limax Z.6.5-5 EL #1 SMP Wed Jan & 19:23:24 EST Z00E
pfmon wersion: 3.0

kemel perfmom wersion: 2.0

page sime: 16384 bytes

CLE TCE: 1024 ticks/second

CPT conficured: O
CIT online H

physical memory : BEEBZEE3EE bytes (2131.3 ME)
physical memory available: £630763640 bytes (63E3.6 ME)

host CPUOs: 4-way S00MHz 1. EME Ttandiwm & (McHinley, B2}
DAL A: D.7.31
PAL B: 0.7.40
Cache lewels: 3 Unicque caches: 4

16384 bytes, line &4 bytes, load lat 1, store lak 2

H 16334 bytes, line 64 bytes, load lat 1, store_lat u)
LE : ZE2144 bytes, line 1E2 bytes, load lat L, store_lat 7
L3 o 1572864 bytes, line 128 bytes, load lac 12, store lat 7

captured events:
PMD4: TAcd THST RETIRED
IMDE: CIU_CYCLES

privilege lewels:
MD4: Thed THST_RETIRED
PMDS: CPU_CYCLES

user
user

wopdtoring mwode: per-process

instruction sets:
PM4: Ihed TNST_RETIRED = ia3z/iatd
IMDE: CPU_CYCLES = ialZ iafd

R E R R CER B HR HR R R ER ER HR ER HR BR HR HR SR ER B MR OER Hh ER Hh HR HR ER R SRR BR HR Hh OHh HR OBR SR HR R BR Hh R B ¥

commard: pfmon --smpl-module=compact-iatd --—short-smpl-period=1000000 ——#long—smpl-
period=1000000 —-aggregate-results —e fiadfd inst retired CPU_CYCLES --—with-header ——
werbose ——suwpl-foutfile=. foutpuc/oube cr=/CPU CYCLES/star w3 d2 dofl --append
#msers/claverty/fei-Z_ 10/chip fsrofutest foube3. exe —-d f -1 §rusers/claverty/ fei—
2.10/chip/sro/futest fest finput

recorded MMDs when IAc4 TNST BETIDED owerflows: IMDE

short sampling rates (base /mask/seed):
Iac4 INST PETIREDL 1000000
CII_CYCLES none

long sampling rates (basefmacks/sead):
Ias4 TNST_ RETIRED 1000000
CII_CYCLES none

sampling buffer entries: Z048

description of columns:
column 1o entry mmber
colimn Z: process id
column 3@ cpu mamber
colimn 4: instmction pointer
column 50 umnicae timestaup
colimn &: overflowed PMD inde:x
coluwn 70 indtial wvalue of first owverflowed PID

when FM4{Licd INST RETIRED) owerflows:
colwmn £: PMDE

R R

Figure 5 Sample Output of PFMON

13

2.4. Vtune

Vtune is a performance tool used to tune an application for maximum
performance [7] through the use of profile and call graph results. The call
graph and profile data allows Vtune to sort the functions by actual time spent
throughout execution. This helps to identify sections of code where most of
the execution is spent which are called hotspots. Once the hotspots have
been identified by Vtune, it allows a user to double-click on a function within
the call graph in the graphical user interface and backtrack to the actual
source-code. Vtune also interfaces to the performance counters of the
Itanium 2, Xeon, or Pentium and can perform sampling sessions just as
PERFMON does on the Itanium 2 discussed in Section 2.3. Vtune is used in
this work to help understand the application under study and to help
determine sections of code that are used frequently within that application.
2.5. Trilinos

The applications that simulate large-scale physical systems are very
mathematical in nature requiring the solution of many different linear and non-
linear systems of equations, both time-dependent and independent [8]. At the
core of these types of applications are various mathematical solvers that
implement different algorithms to solve these systems of equations. Scalable
solver algorithms and software development have long been an area of focus
at Sandia National Laboratories. In the past, the development of these

algorithms and applications was done by the individual scientist and each

14

created their own code even though many codes implemented the same
underlying solver algorithm. The development of these codes was very time
consuming and expensive. The Trilinos Project was created at Sandia to
develop a reusable set of solvers to help reduce development time and
overall expense. The Trilinos Project is a highly evolved system of libraries or
packages that has been created as a basis for future complex application
development and is currently in use at Sandia National Laboratories. Trilinos
is used by many of the scientific applications at Sandia. The representative
workload used in this work also uses the Trilinos set of solvers to solve its
equations.

The various packages used by Trilinos are each independent of one
another although some packages can be used in conjunction with other
Trilinos packages. Some of the packages used in this work include:

« AztecO0O - provides an object-oriented interface the well-known Aztec
solver library. It also allows flexible construction of matrix and

vector arguments via Epetra matrix and vector classes.

. Epetra - provides the fundamental construction routines and
services that are required for serial and parallel linear algebra
libraries. Epetra provides the underlying foundation for all

Trilinos solvers.

« ML - is a multigrid preconditioning package intended to solve large
sparse linear systems of equations arising from primarily

elliptic Partial Differential Equation discretizations.

15

The representative Sandia application that we use in this work (which is
described in Section 5) primarily uses the Epetra and the AztecOO packages.
The Epetra package is the primary package used to create and fill matrices
used in many scientific applications and the AztecOO package is the primary
solver used in the representative workload. The Trilinos Project and its
packages are described in detail in the Trilinos Tutorial [9], as well as other

Trilinos documentation [10, 11].

2.6. Finite Element Method

The representative workload used in this work makes use of the finite
element method to solve a physical system. Some background in the finite
element method helps to understand the execution of the representative
application,
2.6.1. Overview

The basis of the math used in scientific applications is the use of
Partial Differential Equations (PDE’s). PDE’s are used to model physical
phenomena though the use of equations that describe the relationship of
physical quantities such as forces, temperature, chemical reactions, and
velocity by partial derivatives. If the physical system is very large in nature it is
generally not possible to obtain a solution satisfying the governing PDE’s and
so the process of subdivision of the physical system into smaller portions is
used which is known as finite-element discretization. There are various ways

to discretize partial differential equations. In this work we focus on the Finite

16

Element Method (FEM), as opposed to Finite Difference and Finite Volume
Methods.

Finite element analysis (FEA) or FEM allows a large naturally occurring
physical phenomenon to be represented by mathematical equations and to be
solved in parts and then combined to solve the entire problem. Through this
divide and conquer scheme a problem is divided into parts called elements
and the regions where the elements connect are called nodes. There are
various ways of constructing elements in a finite element problem. Elements
that are one, two, or three dimensional in nature will show the definition of the
physical object in more or less detail. Figure 6 shows various shapes of
elements in various dimensions. The tetrahedral element is the most widely
used because it can closely model any physical shape whereas the

hexahedral element will best model a rectangular shape.

VAN

a) Linear b) Triangular c)Rectangular d) Tetrahedral a) Hexahedral
2 nodes 3 nodes 4 nodes 4 nodes g nodes

Figure 6 Element Types

Finite element analysis has six steps in the solution procedure:
1. Discretize the continuum
2. Select interpolation functions

17

3. Find the element properties

4. Assemble the element equations

5. Solve the global equation system

6. Compute additional results
Once a physical system is realized the first step is to discretize the physical
continuum into elements and nodes, which are stored as element connectivity
lists usually stored in an array. The nodes are the vertices or corners of the
elements shown in Figure 6. The nodal coordinates are also stored in an
array. Step two is to select the interpolation functions that are used to track
various interactions between the variables over the element such as
displacement. Each element is defined using this interpolation function to
describe its behavior between its endpoints (nodes) based on various
equations describing the physical phenomenon. Once the element has been
discretized and the interpolation functions have been realized, the matrix
equations which relate the nodal values to their unknowns for the element
need to be established. Once the equations are established for each element
the assembly process begins in which the global equation is assembled
element by element according to each element’s connectivity list. The global
equation represents the whole physical object that the FEM is modeling.
Before the global equation can be solved boundary conditions must be
implemented which describe the physical force or strains on the physical

object. The global equation is typically a matrix-vector multiply in the form:

18

{f}:[A]{X} Equation 1

where A is the matrix that represents the known coefficients and x represents
the unknown values (in vector form). A is also known as the global stiffness
matrix. Once the solution is complete there are times when additional results
other than coordinate displacements need to be computed such as
temperature variations within the original object modeled.

In finite element analysis there are many different solution techniques
and/or ways of generating/assembling the matrices used in the calculations
but all generally result in the same final equation of a matrix-vector or matrix-
matrix multiply [12, 13, 14, 15, 16].

2.6.2. Assembly

The assembly process of the finite element method is the process of
assembling the global stiffness matrix from the individual elements to
characterize the unified behavior of the entire system. This is carried out
using the element connectivity lists, which makes up the global numbering
system of the problem and states how the elements are connected to realize
the actual physical object. When assembling the matrix the contribution of
each element is added to the global matrix. An example of the assembly
process of a linear system with one variable is shown in the following

example.

19

1 2 3 4 &
[& & & .]
1 2 3 4
Elements

Figure 7 Assembly Example Problem

Figure 7 is a one dimensional physical system in which there is one
degree of freedom (one-direction, i.e. x-direction). Figure 6 shows the
physical system separated into four elements with five nodes joining the
elements. The connectivity list of the finite element problem in Figure 7 is
shown in Figure 8. Each element has two nodes numbered one and two as

well as a global number associated with each node as shown in Figure 8.

MNode Numbers
Element Local Glohal

1 1 1

2 2

1 2

2 2 3

1 3

. 2 4

1 4

. 2]

Figure 8 Connectivity List
The element connectivity list shown in Figure 8 states how the
example in Figure 7 will be assembled into a global matrix. Each element will
contribute a 2x2 matrix to the global matrix because each element has two
nodes associated with it. Each element contributes the 2x2 matrix shown in
Figure 9. The value located in (1,1) (e.g., row one, column one) represents

the contribution of node one and the value of (2,2) represents the contribution
20

of node two for each element. The values in Figure 9 are arbitrary in that the
values were chosen for simplicity to show the assembly process. The
negative values represent the connection between the nodes meaning nodes

one and two are connected in the element.

1 —
-1 1
Figure 9 Element Contributions
The assembly process takes each individual element’s 2x2 matrix and places

it in the final matrix based on the column/row of the global node number

shown in Figure 8.

1 -1000 1 -1 000 1 -1 0 00Y) (1 -10 0
-1 1 000 -1 1+41-100 -1'2 -1 00 -1 2 -1 0
0 0 00O 0 -1 1 00 0 -11+1-110 0 -1 2 -1 0
Innnou{o 0 000 00 -1 10 {0011“1
lo oooo/) o o o000/ L0000 0 00/ g 1)

1]

c)

1 -1 0 0 0
-1 2 -1 0 0
0 -1 2 -1 0
0 0 -1 2 -1
w0 0 0 -1 1

el

Figure 10 Assembly Process
The global matrices shown in Figures 10a-e each have five rows and columns
because the object in Figure 7 has five nodes. When an element has shared

nodes with another element the values associated with that node are additive

21

in the global matrix (Shown in Figure 10b, c, d). This is also shown in detail in
section 3.6.4. Figure 10a shows the individual contribution of element one to
the global matrix; Figure 10b shows the contribution of element two; Figure
10c shows element three; and Figure 10d shows element four’s contribution.
Each element’s contributions are added to the global matrix. Figure 10e is the
final A matrix which is the global stiffness matrix of the finite element problem.
This final global matrix is normally a sparse matrix for large finite element
problems. A sparse matrix is a matrix with few nonzeros usually situated
close to the diagonal of the matrix. Sparse matrices are described in detail in
Section 2.7.

The global matrix can take on various shapes and orderings based on
the node numberings and shape of the physical system. For instance in
Figure 10, the problem shape is a long bar with seven elements and a total of
32 nodes. The graph of the matrix is a narrow banded matrix (Figure 11)
meaning the nonzero values are associated closely to the diagonal of the
matrix. Figure 12 shows a three by three problem with six elements and 32
nodes. This matrix has a very different graph but has the same number of
rows and although they are similar in size the performance changes in the
multi-processor setting due to the extra communication between processors.
Although this is not within the scope of this work, mesh generators and graph
theory play an important role in performance and behavior of these finite

element problems.

22

‘o 22 o ‘0

Figure 12 Plate Representanon and Matrix Graph

2.6.3. Preconditioning/Solution

Once the A matrix which has been assembled into the global matrix
form it can be solved. There are various ways to solve these large sparse
matrices. For large sparse matrices it is not feasible to produce an exact
solution since this would take an infinite amount of time to compute. Instead

there are various ways to converge on an approximation of the exact result

23

through the use of various iterative and projection methods. The AztecOO
package within the Trilinos set of solvers allows for six various “solver”
routines [17]. These routines are:

e AZ cg- Conjugate gradient

e AZ_gmres- Restarted generalized minimal residual

e AZ cgs- Conjugate gradient squared

e AZ tfgmr- Transpose-free quasi-minimal residual

e AZ bicgstab- Bi-conjugate gradient with stabilization

e AZ lu- Sparse Direct Solver
These routines provide various techniques for converging on the exact
solution to the matrix-vector equations (Equation 1). These equations can be
preconditioned to allow for faster convergence. Preconditioning these
equations in matrix form requires another matrix (preconditioning matrix) to be
multiplied in order to achieve faster convergence and is beyond the scope of
this work. The AztecOO package provides five methods of preconditioning.
These preconditioners are:

e AZ Jacobi- k step Jacobi

e AZ Neumann- Neumann series polynomial

e AZ Is- Least-squares polynomial

e AZ symm_GS- Non-overlapping domain decomposition

(additive Schwartz) k step symmetric Gauss-Siedel

24

e AZ dom_decomp- Domain decomposition preconditioner
(additive Schwartz)

Although these are the preconditioners available in the AztecOO package,
various other preconditioners exist within the Trilinos solvers, such as a multi-
level preconditioner found in the ML package.
2.6.4. Finite Element Example

An example of finite element analysis is helpful in understanding the
process of computing the final result in a finite element problem and proved
extremely useful in understanding performance analysis data from our actual
study of the representative application used in this work. This example will
show how the assembly of the global matrix takes place from the element
stiffness matrices. Figures 13-15 show the example implemented in

COSMOS which is a finite element solver used in Solidworks.

Hhied 500 Lbs
| i
|

Figure 13 Cosmos Example

: l/‘/\/l/\/l/ AVATE
VA A A A A
A A A7

Figure 14 Cosmos Elements

25

URES (m)
1,0892-008
9,930e-007

. 9.073e-007
. 8.1662-007
. 7.2582-007

_B.351e-007

54442007

. 4.536e-007

. 3.628e-007

.2 722e-007

1 .812e-007

IQU?EE—DDB
1.000e-033
Figure 15 Cosmos Final Solution

In these figures the example is a beam shaped object with one side
fixed and the other with a force of 500 ft-Ibs in the opposite direction. The
elements used within COSMOS are a tetrahedral shape and in this test
problem there are a total of 848 elements and 1563 nodes. As seen in Figure
12 there is a displacement on the right of the figure due to the force of 500
Ibs. The example that is shown next is a simplified version of the actual
computation of the elements and how the elements are assembled to
represent the whole system that is shown in the COSMOS example. The
differences in this example and the COSMOS example are that the elements
are triangular in shape as opposed to tetrahedral and the example is two-
dimensional. Figure 16 shows the layout of the beam and the location on the

“xy” plane.

26

2 4 100k
—

100k X

| 10ft:

Figure 16 Thin Plate Example

This example shown in Figure 16 is a structural analysis problem of a
thin plate with dimensions 6 feet wide, 10 feet long, and 1 inch thick. It is fixed
along the y axis and is acting under pure tensile loads of 100 kips each,
applied at two corners. This problem is trying to solve for the displacements in
the x and y directions. Some other information that is needed to solve the
finite element method of the plate is Young’'s modulus and Poisson’s ratio
values of 30,000 and 0.5, respectfully. The structure is already split into four
elements label 1-4 with five nodes labeled 1-5. The governing matrix equation

for the analysis of the structure is given by Equation 2:

[K]{a}:{Q} Equation 2
where the global stiffness matrix [K] is defined by Equation 3 which is the sum

of each individual element’s stiffness matrix:

27

[K]=Y[K] Equation 3

The expression that defines the element stiffness matrix [K] is given by
Equation 4 which is derived from an equilibrium equation in structural
analysis. Its explanation is beyond the scope of this work but is expressed as:

dx -dy
2

[k1={B} [DI{B}t-

Equation 4

The displacement-strain matrix {B} is defined for a triangular element defined
by nodes i, j, m and is expresses in Equation 5, in which X;, X, Xm, Vi, ¥j, and ym
are the nodal coordinates in the “xy” plane of nodes i, j, and m, respectfully.
The thickness of the plate is defined by t in Equation 4 and the area of the
element is given by A in Equation 5 which is also equal to twice the value of
dx-dy.
. yj—oym XmO . ym-yi 0 yi-yi 0 Equation 5
oAl O Xmed 0 om0 e
Xm=xj yj—ym Xi—xm ym-yi Xj-xi yi-yj

The elasticity matrix for a plane stress analysis problem in a two-dimensional
setting is given by Equation 6 and its derivation is also beyond the scope of

this work.

E
1-v?

Equation 6

l o o

{D}=
1-v

1

v

0 -
2

o <

The general nodal displacement matrix {9} is shown in terms of u and v which

correlate to x and y, respectfully. The term ul in Equation 7 correlates to the
28

“x” displacement for node 1 and v1 correlates to the “y” displacement for node

1 and so on.

Equation 7
{3}=

The boundary condition of 100 kips is applied to nodes 4 and 5 as defined in
Figure 16 and is illustrated by the Equation 8 in which the terms also correlate

to the terms in Equation 7.

Equation 8

O O O O o o

{Q}=
100

100

The generation of the global stiffness matrix is achieved by computing the
stiffness matrix associated with each element and then assembling them into
the global matrix. Figure 17 shows the coordinates of the nodal points of the

structure.

29

2(0,6)=m 4(10,6)

3(5,3)=1

3

1(0,0)=1 5(10,0)

Figure 17 Thin Plate Nodal Coordinates
The generation of element stiffness matrix is shown only for element 1 as
each other element is found using the same method. The displacement-strain
matrix {B} of element 1 is shown below.

(3-6) 0 6 0 -3 0
-5 00 0 5 Equation 9
-5 (3-6) 0 6 5 -3

12

Bl—_ %
&) 2-30-144

Equation 9 shows the displacement-strain matrix with the area equal to 30
times one inch (12/144) and the values of xi, xj, xm, yi, yj, and ym are the
coordinates in the “xy” plane shown in Figure 17. Equation 10 shows the
simplification of Equation 9:

-3 0 60 -3 0

{B}:i 0 -5 00 0 5 Equation 10
720

-5 -3 06 5 -3

The elasticity matrix [D] (Equation 11) is shown using Young’s modulus (E in

Equation 6) and Poisson’s ratio (v in Equation 6).

30

1 05 0 .
30000 1 0 Equation 11

1-(0.5) (') o 1-05
2

{D}=

Equation 11 simplifies to the following matrix form of Equation 12:

1 05 O
0.75
0 0 0.25

The calculation of the element stiffness matrix is determined by Equation 13:

[k], ={BY [DI{B}t-A Equation 13

The constants of the matrix multiplication are precomputed in Equation 14:

2 .
[1J [30000j(1)(5x6xl44j _16667 Equation 14
720) \ 0.75 2

Equation 15 shows the substitution of the values of the matrices B and D in

Equation 13:
(-3 0 -5]
0 -5 -3 _
6 0 0 1 05 0 -3 0 60 -3 0 Equation 15
[k], = (166.67) x o o0 6 405 1 0|0 -500 0 5
0 0 025/|-5 -3 06 5 -3
-3 0 5
|0 5 -3

Equation 15 simplifies to Equation 16:

31

[-3 -15 -125]
-25 -5 -0.75
A o |[-3 0680 -30 Equation 16
[K], = (166.67) 10 -5 00 0 5
0 0 15
-5 -306 5 -3
-3 -15 1.25
|25 5 -0.75
And further to Equation 17:
[1525 1125 -18 —-7.5 275 —3.75]
1125 2725 -15 -45 375 —2275 Equation 17
-18 -1 -1 1
[K], = 166.67)x| .2 > %0 8 >
-75 -45 0 9 75 —45
275 375 -18 75 1525 -11.25
|-375 —2275 15 -45 -1125 27.25 |

The contributions of Kij (nodes) to the global matrix are shown below with

each being a 2x2 matrix corresponding to 2 degrees of freedom, one in the x

direction and the other in the y direction. Recall degrees of freedom represent

a variable within the problem that can represent direction, velocity,

displacement, or any other physical variable that needed to solve these finite

element problems.

For element 1:

_|1525 11.25 [-18 -75 [275 -375
mo111.25 27.25 B71_15 —45 271375 —22.75
« ~18 -15 B ~-18 15
1-75 -45 10 9 27175 -45

[275 375 « -18 75 [1525 -11.25
21375 —-22.75 B7115 -45 211125 2725

32

For element 2:

< _ 15.25 11.25 « - ~125 15 « ~2.75 -3.75
2 111.25 27.25 71 75 _50 271375 2275
‘- 125 75 « 25 0 « ~125 -75
21 15 ~50 710 100 7| 15 -850
« ~275 3.75 « - ~125 -15 « 15.25 —11.25
21375 2275 B0 75 -50 “ 11125 27.25

For element 3:

K |15 1125 « 7275 315] o [-125 -15
Uo111.25 27.25 71 _375 2275 BTl 75 -50
« 275 -3.75 « _ 1525 -11.25 « 125 15
81 375 2275 % 11125 2725 ¥ 75 -50

-125 -75 -125 75 25 0
K31 = Kss = K33 =
-15 -50 15 -50 0 100

For element 4:

« _|15:25 11.25]
©7111.25 27.25| y _|1925 -1125) - [18 75
T T|-1125 -2725] % 7|15 45

[-1525 -11.25]
7| 1125 _o725] g _[15% WB] _[-18 75
i 11.25 27.25 -15 -45

« _[-18 -15

<. -|® 1 “ | 75 —45] x_-|® 0O
7.5 4.5 -

Once all the element stiffness matrices have been found the assembly
process can begin by summing all the contributions according to the

following:

33

_Z K11

2K
Z Ka
_z Ks,

2 K
ZKZl ZKzz ZKB ZK24 ZKzs
ZK33
ZK42 ZK43 ZKM ZK45
ZK53

Z Ks,
Z Ks,

2 Ki

Z K14
> Ks
Z K54

z K15
> K

Equation 18

Z K55

Each term in Equation 19 contributes a 2x2 matrix to the final matrix. Only the

nodes that are shared between elements will need to be summed. The global

stiffness matrix is shown in Equation 19 which is a 10x10 matrix because

there are five nodes each with two degrees of freedom for all the elements:

[305 225
225 545
275 375
-3.75 -2275
-305 -225
K = (166.67)- o254t
0 0
0 0
-275 -375
| 3.75 22.75

2.75

3.75

30.5

-30.5
225
-2.75
-3.75

-3.75 -305 -225
—-22.75 -225 -545
0 -305 225
54.5 225 -545
22.5 122 0
-54.5 0 218
375 -305 -225
2275 -225 -545
0 5.5 22.5
0 225 -455

0
0
-2.75
3.75
-30.5
-22.5
30.5
22.5
-15.25
-11.25

0 -2.75 375]
0 -375 22.75
_375 0 o |Equation 19
22.75 0 0
-225 55 225
-545 225 455
0 -1525 -11.25
545 -11.25 -27.25
-11.25 305 0
-2725 0 545 |

The computation of the nodal displacements, {d}, is based on Equation 20:

{0} =[KI™{Q}

{0}=

{

1

166.67

100
JESR

100

34

Equation 20

Equation 21

Because nodes 1 and 2 are fixed, the stiffness matrix is reduced to a 6x6

matrix. The other unknown displacements are computed with the previous

equation. The reduced inverted stiffness matrix is shown below as:

[0.012
0.001
0.014

0
0.004
-0.001

[K]* =

0.013
0.029
0.065
0.039
0.023
0.052

{3}=

0.01 0.03
0 0.056
0.052 0.142
—-0.014 0.096
0.019 0.06
0 0.111
1.397
-0.139
7.988 -Lin.
—-1.354| 166.67
6.624
0.279

0.004 0.023]
—0.001 0.052
0.028 0.13 Equation 22

0 0.077
0.047 0.051
0.003 0.118

Equation 23

This problem demonstrates the basic method of finite element analysis

through solving a basic a simple structural analysis example. Changing the

problem from triangular elements to hexahedral adds more complexity and

the matrix size is much larger because each element now has eight nodes

instead of three. So for this problem to be changed to hexahedral elements

the number of nodes per element would change from three to eight and since

there were two degrees of freedom, each element would contribute a 16x16

matrix to the global stiffness matrix instead of a 6x6 matrix as shown with the

triangular elements.

35

2.7. Sparse Matrices

Sparse matrices are matrices that have few nonzero terms compared
to zero terms, usually situated close to the diagonal of the matrix. Sparse
matrices arise in many scientific/engineering applications. Some of the

applications are structural analysis, networks, and fluid-flow. In Equation 24,

{f}: [A]{X} Equation 24

the “A” matrix is usually a sparse matrix in the application of Finite Element
Analysis as seen in Section 3.6.4 and is also the main operation in many
different iterative solvers such as Preconditioned Conjugate Gradient method.
The benefit of sparse matrices is that only the nonzero terms and their
locations need to be saved. There are several ways to store a sparse matrix
as discussed in the next section.
2.7.1. Storage Schemes

The first and most obvious is the use of three arrays one for the
column, another for the row, and finally one for the data. The types of these
arrays are integer, integer, and double, respectively in most cases. Shown in
Table 3 is an example of the column-row technique called coordinate format.
This is shown in Table 2 using zero indexing [18]. The coordinate format
shown in Table 3 is a format where the row and column locations of only
nonzeros are stored. For example, the term “3.0” found in row one and
column one of Table 2 (using zero indexing) is represented by a “1” in i-index,

a “1”in j-index, and a “3.0” in value [all in location two of there respective
36

arrays]. All of the other non-zero elements in Table 2 can be represented by

the three arrays in Table 3 in a similar manner.

Table 2 Example Matrix for Sparse Storage Schemes

1.0 0 0] 2.0 0] 0
0 3.0 0] 0] 4.0 0]
0 0 5.0 0 0 0

6.0 0 0 7.0 0 8.0

Table 3 Example Sparse Matrix Coordinate Format Storage

i-index = (3, 1, o, 3, 2, o, 1, 3),
j-index =(5, 1, 3, 3, 2, 0, 4, 0),
value = (8.0, 3.0, 2.0, 7.0, 5.0, 1.0, 4.0, 6.0)

Next is a storage-by-row technique called compressed row storage
(CRS) which also consists of three arrays of the same type as the coordinate
format. The only difference is that the row array is compressed to only contain
pointers to the first non-zero data entry in each row contained in the data
array. The only array that changes compared to the coordinate format shown
above is the i-pointer array. The i-pointer for CRS format points to the location
within the j-index array that is the first nonzero of each row. For example, the
second term in i-pointer points to value “1” (remember zero indexing) in j-
index so one would know when the next row began. Table 4 shows this
technique. There also is a technique called compressed column storage that
is implemented in a similar manner, except the column array is compressed

rather than the row array as in the CRS format.

37

Table 4 Example Sparse Matrix CRS Format Storage

i-pointer = (0, 2, 4, 5, 8),
J-index = (O, 3, 1, 4, 2, o, 3, 5)
valve = (1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0

)

The last method is called variable block row format (VBR) which is
used when there are large portions of the matrix that can be divided into
smaller dense matrices (Table 5). This method has six arrays to hold the
various information. The first array (row-pointer) is an integer array that holds
pointers to the boundaries of the block rows (Table 6). The next array (column
pointer) is also an integer array that holds pointers to the boundaries of the
block column. Another array (value) is an array of doubles that contains the
block entries of the matrix. Another integer array (index) holds the pointers to
the beginning of each block entry stored in the value array. An integer array
(block-index) contains the block column indices of the block entries (Table 7)
in the matrix. The final array (block-pointer) contains pointers to the beginning

of each block row in block-index and the value arrays. This method is the

most difficult to implement and is shown graphically in Tables 5-6.

Table 5 Example VBR Matrix

0o 1 2 3 4 5 6 7 8
o S oo o +
0] 1.0 2.0] | 3.0 | I
1] 4.0 5.0 | | 6.0 | I
o e S o +
2 1] 7.0 8.0 9.0 | 10.0 | I
o S oo o +
3 I | 11.0 | 12.0 13.0 |
4| I | 14.0 | 15.0 16.0 |
5 | I | 17.0 | 18.0 19.0 |
S S o - +
6

38

Table 6 Example VBR Storage Matrix

Row pointer = (0, 2, 3, 6)

Column pointer = (0, 2, 5, 6, 8)

Block pointer = (0, 2, 4, 6)

Block index = (0, 2, 1, 2, 2, 3)

index = (0, 4, 6, 9, 10, 13, 19)

valuve = (1.0, 4.0, 2.0, 5.0, 3.0, 6.0, 7.0, 8.0, 9.0,
10.0, 11.0, 14.0, 17.0, 12.0, 15.0, 18.0,
13.0, 16.0, 19.0)

Table 7 Block Representation of Matrix
0 1 2 3 4

S I
0] bOo | | bl | |
PSS S S S ——
1] | b2 | b3 | |
S S
21 | | b4 | b5 |
S
3

To understand the VBR technique of storing sparse matrices let us look at the
example of accessing the block row 1 in Table 5. First a lookup in the block
pointer array and is needed to see where block row one appears in this case
it is block pointer [1] = 2. This indicates that block two (b2) in Table 7 contains
the first nonzero block from block row one and that it is from block column
one as indicated by block index [block pointer [1]] =1. Second the block
pointer [1] also indexes into index. That is index [block pointer [1]] = index [2]
6 = which points to value [6]. This is equal to value [index [block pointer [1]]
=value [index [2]]. Where 6 is the location in value where the element, 7.0, is

located.

39

3. RELATED WORK

There are various other works that have studied similar material
relevant to this work. This section is organized by topic. First is some related
work on the performance of Sparse Matrices, then finite element research,
and finally performance studies on the Itanium 2.
3.1. Performance of Sparse Matrices

The performance of sparse matrix operations depends primarily on the
memory hierarchy of the microarchitecture. Taylor [19] has studied the
performance of these operations and has concluded that various memory
organizations maximize the performance of sparse-matrix operations. Sparse
matrices are stored in compressed form in which one data structure points to
the position of the matrix data in another data structure. This form of indirect
addressing allows the cache to be very effective for storing the data because
of the spatial-temporal locality of the accesses. Spatial locality means that if a
location in memory is accessed the datum that is close to that location is likely
to be used in the near future. The term temporal locality states that if a
location in memory/cache has been accessed recently it is likely to be reused
in the near future (i.e., looping). The study by Taylor concluded that to
maximize the performance of these sparse matrix problems, the cache
organization would have to possess the following characteristics:

e Direct-Mapped Cache

e Cache Size of at least 1K words or 8K bytes
e Write-back Policy

40

e Pipeline depth for write equal to 2 (to allow for one-cycle
minimal write for multi-word block)

Block size equal to 16 words

Invalidate data on a read

2 interface ports -1 read, 1 write

2 phase-clock to allow for simultaneous read and write

Another study by Temam and Jalby describes the performance of
sparse algorithms on caches [20]. They concluded that cache size and the
bandwidth of the matrix are closely dependent. When the bandwidth of the
matrix is smaller than the cache size, spatial and temporal locality is well
exploited with their scientific application. On the other hand, when the
bandwidth is greater than the cache size, self and cross-interference degrade
the reuse of the vector x, meaning the data within x gets overwritten by the
vector x or the data within the A matrix before it gets reused. Also they report
a performance increase when the line size is sufficiently large (around 128
bytes), exploiting the potential locality of the vector x especially in 3-
dimensional finite element problems such as cube3 where the vector x is
used more than in the 2-dimensional case.

3.2. Finite Element Research

Finite element workloads have been used as the basis for performance
studies in other related works. The finite element workloads have mainly been
studied at the multiprocessor level as of late because they can scale on
multiple processors due the intrinsic value of matrix operations, such as [21]
in which they design a high performance, high efficiency multi-processor

computing engine for dynamic finite element analysis. In [22] they use a finite
41

element workload called DYFESM, which is a structural dynamics code which
implements a finite element model using 8 stress and 5 displacement degrees
of freedom per node. Within this problem they characterized the dominate
loops and correlated the loops to the loop-based Livermoore Fortran Kernels
Benchmark. They found that the dominate subroutine was for a
preconditioned conjugate gradient solver in which it was performing a matrix-
vector multiply. In [23] they conclude that the performance of the 3-D TGM
finite element solver is directly related to the linear system solver, in which
they found the conjugate gradient algorithm to be the most optimal which
uses the same matrix-vector multiply found in [22]. To fully utilize the
resources of an architecture running a application that contains the matrix-
vector multiply found in these finite element workloads Taylor et al. propose
an efficient scheme for storing sparse matrices and through the use of added
hardware to the architecture to help in efficiently executing the proposed data
structure. They demonstrated a 96% utilization of the floating-point units [24].
Also Vuduc et al. of UC Berkley discuss performance optimizations and
bounds for a sparse matrix-vector multiply in which the results suggest that
future performance improvements will come from two sources: 1)
consideration of higher-level matrix structures, and 2) optimizing kernels with

more opportunity for data reuse through higher level techniques [25].

42

3.3. Itanium 2 Performance Studies

The Itanium 2 microarchitecture is a newer architecture in which the
basis for design was to maximize the performance of scientific applications
that are mainly floating-point workloads. As seen by Purkayastha et al. [26]
the floating-point performance of the Linpack benchmark on the Itanium 2
dominated the studies of modern 64-bit architectures (AMD Opteron, Apple
G5) in which they uses a highly optimized Goto BLAS library. Also within the
performance study in [26], they ran benchmarks of a 3d finite element code
(MGF) and it also performed the best on the Itanium. Griem et al. also studied
the Itanium 2 and propose a synthetic workload consisting of a sparse matrix-
vector multiply to determine various characteristics of various other
architectures besides the Itanium 2 [3]. The results of their studies state that
because of the inability of the Itanium 2’s L1 data cache to store floating-point
variables some delays occur due to the register spills of larger working sets.
But the Itanium 2 was able to hide memory latencies using a large register set
and deep explicit prefetch queues.

Although many benchmarks contain some form of a finite element
problem no current research has been found that focuses on uni-processor
performance characterization of these finite element workloads that does not
discuss the performance of the sparse matrix-vector multiply. Our research
looks further into performance analysis of the Itanium 2 microarchitecture and

how maximum performance may be achieved.

43

4. THESIS PROBLEM

The motivation for the work is to understand how this finite element
application, “Cube3”, actually goes about creating and solving a system of
equations and the performance characteristics associated with the
application. By studying this application on the Itanium 2, which has the
potential to perform well due to the large cache hierarchy and functional units,
we hope to pin-point a performance bottleneck that can easily be identified
and modified, be it hardware or software, which will lead to a performance
improvement. Also, by studying “Cube3” on the Itanium 2 some micro-
architectural characteristics can be used in future work of creating an analytic
model used in a multi-processor model used at Sandia National Laboratories.
This analytic model will be used in the future to help in the decision of what
type of processor will have the best performance benefits used in the next

generation of supercomputers.

44

5. WORKLOAD

National laboratories have some of the largest and most costly
supercomputers ever designed and built. Because of the high cost of design
and construction some studies of the workload executed on these computers
are needed to understand how they spend most of their execution time.
Bradley et al. [27] have studied the types of applications running on their
system and have shown that the greatest amount of computing time has been
in scientific workloads such as Finite element and physics based applications.
Most of these programs use matrix operations which solve large numbers of
differential equations. Therefore, a representative workload should include
matrix assembly and various techniques of solving these matrices.

A workload that is intended to be representative of the many scientific
codes was chosen as a basis of all scientific workloads at Sandia National
Laboratories. This workload is a Finite Element problem that allows the user
to specify various different techniques to solve the problem. The workload is
described in detail in the next section. The overall study of this workload is to
better understand the workloads on National Laboratories computers and also
to provide information on what type of microarchitecture will maximize the
performance of these types of applications.

5.1. The “Cube3” Application
The application chosen for this performance study is a Finite Element

test problem, called “Cube3,” written and provided by Alan Williams of Sandia

45

National Laboratories in Albuquerque, New Mexico. “Cube3” is a test problem
of a finite element interface (FEI) written as an abstraction layer between
engineering/scientific software and math solvers [28]. The FEl is a linear
system assembly library used for assembling sparse matrices in applications
that use unstructured meshes. The finite element interface provides a layer of
software to allow applications the ability to switch between various solvers
without changing application code. The various linear solvers that can be
used by the finite element interface are Trilinos, PETSc, FETI-DP, HYPRE,
SPOOLES, Prometheus, and others. The “Cube3” test problem is an arbitrary
problem written to test the performance of linear system assembly and
solution. Although “Cube3” only mimics a finite-element problem it was
chosen to represent Sandia’s workloads because of its simplicity and the
genuineness of the assembly and solve processes within the “Cube3”
workload. The test problem mimics a finite element application because it
imitates the data produced from an application operating on a mesh of 8-node
hexahedral elements (shown in Figure 18). The nodes are represented at

each corner of the hexahedral element.

o
Figure 18 Hexahedral Element

46

The number of elements can be varied based on width, depth, and
degrees of freedom based upon an input file used by the “Cube3” test
problem which can be found in the Appendix. These degrees of freedom
represent physical attributes such as pressure, temperature, velocity, or any
other physical phenomenon that one wishes to compute. The number of
elements is calculated by (width) - (width) - (depth). Figure 19 shows a

graphical representation of a width equal to three and a depth of one.

29 30 31 32

D.. a; o 1
13(_!/ i 143//9 155//? 16<f

h"

| I
I]
I I I
]] 1
I I I
I] 1
] I I
1] 1
]] I
I I 1
]] I
25 26 27 28
i o e i e .)_ ___________)_ ____________ =
’ <
al ” 100 7 x b 0 L 12
O F— O— (&}
1 I I
I 1 1
] I I
]] 1
]) I
]] I
I I 1
1] I
] I - I
21 22 23 24
G e e Py -f)
' - s
c e 3 r T e 8
o— o— O o
1] 1
] I]
]]]
] I 1
1]]
1] 1}
] I]
]]]
I I 1
17 18 19 20
D D G ettt S #)
P r 4
/
P 247 347 44"
O o o o

Figure 19 3x3x1 Hexahedral Elements
The number of equations in the linear system is equal to the number of
nodes multiplied by the number of degrees of freedom per node where the
number of nodes is equal to (“width”+1) - (“width”+1) - (“depth”+1). As stated

above, each node can be defined to have a specified number of degrees of
47

freedom. This test problem usually runs on large multi-processor systems
using a MPI (Message Passing Interface) to achieve better performance. In
the parallel setting this problem is spilt across the depth of the cube. In other
words the depth is divided by the number of processors specified during
runtime. The shared nodes, which are nodes at the boundary of where the
problem is split, appear on both of the processors. The “Cube3” workload
provides a good test problem of the various underlying solvers and the how
the problem is assembled, which is a major reason for use as a

representative workload.

48

6. METHODOLOGY

The performance study of the representative workload, “Cube3,” is
determined first by establishing a problem size that will be studied. The
problem size should be chosen to maximize the utilization of the cache under
study, in this case the cache of the Itanium 2. The cache statistics collected
by the performance-monitoring unit decide what problem size to study since
the data of the matrix and vectors of the Finite Element problem need to be
held in the memory hierarchy to maximize the performance of the application.
By executing “Cube3” with various problem sizes, we identify a size
sufficiently large enough such that the working set can not be fully held in
cache. The first step in varying problem size is to determine a maximum
number of equations that can successfully complete on the Itanium 2
microarchitecture. Once a maximum value is found, then problem size studies
are conducted based on varying the problem size via the input file to “Cube3”.

These values are calculated by Equation 25 described in Section 5.1:

equations = (w+1)-(w+1)-(d +1)-(dof) Equation 25
After determining an appropriate problem size, various studies during
runtime are performed to understand more about the “Cube3” application.
These studies include studying the various phases throughout the execution
of “Cube3.” This is conducted through the use of call graph and profile results
in correlation to the interval data collected throughout the execution of

“Cubed.” Vtune is used to generate the call graph data and profile data. The

49

interval IPC graphs are achieved through the use of the PERFMON software
by outputting the number of cycles completed every one million instructions
and then resetting the counter so that it is no longer a cumulative counter.
This will give a list of the number of CPU cycles every one million instructions.
By graphing the interval IPC data the phases with poor performance can be
located by low segments of the IPC.

Experiments are then conducted on how varying the shape of an
object that “Cube3” is studying will effect the various phases of execution. By
holding the number of equations constant for a few different shapes (i.e.
beam, cube, or thin plate) various performance attributes can be studied.
Instruction mix of the shape under study is also collected to help to categorize
the application as an integer or floating-point application and how the shape
effects the instruction mix. In addition, cache statistics are studied to
understand if the shape of object changes the cache miss rates. These
studies help in understanding the application as the problem changes as it
does in a real world application.

Once an overall understanding of the “Cube3” application is achieved a
detailed performance study is conducted based on the problem size studies.
The performance study is conducted using stall counters within the Itanium 2
microarchitecture. To determine where the stalls in the pipeline occur Jarp
[29] has determined a methodology for performing bubble analysis on the

Itanium microarchitectures using the hardware performance counters. This

50

methodology provides a top-down approach to identify and understand
bottlenecks in the micro-architecture. This bubble analysis methodology
allows a user to determine if the major cause of performance degradation is
due to data cache stalls, branch misprediction, instruction miss stalls, floating-
point unit stalls, general register scoreboarding, or front-end flushes. Through
this global stall analysis, we can identify problem areas in the micro-
architecture.

The methodology of this bubble analysis examines all the stall
contributions in the pipeline and then allows for further exploration of those
major stall contributions. The first step in determining a bottleneck using
Jarp’s approach is to consider all stall cycles and determine the cause of the
stall. The Itanium 2 micro-architecture has two major components, the front-
end (instruction decode and dispatch) and the back-end (execution). Within
the Itanium 2 microarchitecture there are five main units which can cause
stalls:

e Back-end stalls caused by an exception/interruption or branch
misprediction flush (PMU event be_flush_bubble_all)

e Back-end stalls due to Level 1 data cache or Floating Point Unit
(be_l1d_fpu_bubble_all)

e Back-end stalls due to the execution stage of the pipeline

(be_exe_bubble_all)

51

e Back-end stalls due to the register stack engine
(be_rse_bubble_all)
e Back-end stalls due to the Front-End (be_exe_bubble_fe).
Within each of these categories are vary sub-counters to provide a finer
granularity of the stall causes. The stall counters and their sub-counters are
shown in Table 10. The major contributions of the second sub-counter of

“Cube3” will be described in detail in the results section.

Table 8 Itanium 2 Stall Counters

Total Stall

Sub-Counter Second Sub-Counter
Counter

Be_flush_bubble_bru
Be_flush_bubble_all Be_flush_bubble_xpn

Be_L1d_fpu_bubble_I1d
Be_L1d_fpu_bubble_I1d_dcurecir
Be_L1d_fpu_bubble_L1d_tlb
Be_L1d_fpu_bubble_L1d_stbufrecir
Be_L1d_fpu_bubble_L1d_fullstbuf
Be_L1d_fpu_bubble_L1d_L2bpress
Be_L1d_fpu_bubble_fpu

Be_L1d_fpu_bubble_all

Back_end_bubble_all

Be_exe_bubble_grall

Be_exe_bubble_grgr
Be_exe_bubble_all Be_exe_bubble_frall

Be_exe_arcr_pr_cancel_bank

Be_rse_bubble_overflow
Be_rse_bubble_all Be_rse_bubble_underflow

Back_end_bubble fe none

“Cube3d” also has the ability to change the various solver algorithms
used to solve the linear system through the use of the AztecOO package
within Trilinos. By varying the different methods of solving the “Cube3”

problem, a comparison of the solvers is performed to see the benefits of
52

each. This could lead to performance improvements of one or all due to the
various solution methods performance characteristics. This is done through
the use of the call graph/ profile data and the use of the interval data. Also,
“Cubed” has the ability to change various storage methods (Crs and Vbr)
through the input file as well as changing from the use of no preconditioner to
the use of various preconditioners. A comparative analysis of the various
methods will help to understand the different characteristics of each. This
study will also use the interval IPC data to understand the changes in the
phases and to see the performance benefits of each.

The Itanium 2 is a VLIW microarchitecture which is an in-order core
which relies on the compiler to perform all scheduling of parallel instructions.
This means that the performance of applications relies mainly on the compiler
in use. A comparative analysis is needed to see which compiler performs the
best on the Itanium 2. The two compilers available on our Itanium 2 are the
Intel lcc compiler and the Gnu Gcc compiler.

Throughout the performance analysis of “Cube3” a problem section of
the code is determined within the solve phase of execution. Some
optimizations to the code were implemented in conjunction with some
compiler optimizations to see if performance gains are achievable within the
compilers in use. The results of these studies are also presented in the

results section.

53

7. RESULTS

The results section of this work present the work necessary to
understand “Cube3” as well as understand the performance of it. Section 2 of
the results helps in the understanding of “Cube3” whereas Sections 3 through
5 are focused on the performance associated with “Cube3” on the Itanium 2.
7.1. Problem Size

We began the problem size studies on the Itanium 2 microarchitecture
by choosing a large cube size of width 72, depth 72 and six degrees of
freedom which calculated to a total number of equations equal to 2,334,102.
With this problem size the Itanium 2 ran out of memory so the study was
backed down to a maximum number of equations of about half the size of
72x72x6 which was around one million equations. With a maximum problem
size of one million equations the problem size was great enough to
overwhelm the cache. For example a 100x100x1 problem size contains about
27 million nonzeros which overwhelmed the L3 cache of size 1.5 Meg. This
number was large enough to alleviate any cold start misses and stress the
cache hierarchy sufficiently. Various configurations of width and depth and
degrees of freedom were calculated to have a maximum of one million
equations. The only study that showed any conclusive data was the study of
varying width with constant depth and degrees of freedom. Table 8 shows the
problem sizes executed to get the plot found in Figure 20. The rest of the

problem size studies and plots are contained in the Appendix.

54

In Figure 20, one can see that the maximum IPC correlates with the
minimization of the cache miss rates in the level 3 cache (Level 1 miss rates
are not shown due to the fact that floating-point data bypasses the L1 cache
and also because the PMU does not have a counter for L1 data). The
maximum performance is at a point when the problem size is 300x1x1 which
equates to 181,202 equations. From that point on the caches start having
conflict misses due to the fact that the problem size was too large to be
entirely held in cache and therefore needed data was getting overwritten by
other data which increases the miss rate leading to performance degradation.

The next study studied various problem sizes that have a maximum of
around 180,000 equations because of the maximum IPC point was when
there were around 180,000 equations in the study of problem size above.
This study had inconclusive results (results shown in Appendix) because of
the fact that all the studies of varying shape showed relatively the same
statistics for IPC, L2 miss rates, and L3 miss rates as the problem shape was
varied. The problem sizes that were studied were of sizes 300x1x1 (181,202
equations), 55x55x1 (175,616 equations), 45,000x1x1 (180,004 equations)
due to the performance characteristics of various problem shapes shown in

section 7.2.2.

95

IFC

L2 Miss Rate

L3 Miss Rate

Cr=- Vary Hidth = Depth 1 x Dofl

e o
o= Mo f 00T] 00
T T T T 17T 1T°1

T
"LoIPCY

=

2]
=

a.ae
B.B55
8,63
B.845
.64
B.@35
.63
B.825
a.az
B.815
@.a81

[B B B I o]
== Mmoo R N T

T
".sL3 MISS RATE"

Depth
1

RNV A JPUNT A JPUNE S A S T OSSP AT N PRI JPUII J

Figure 20 Vary Width CRS -IPC, L2&L3 Cache Stats

Width

25

a0

fis
100
125
150
175
200
225
250
274
300
324
340
374

Dof

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1352
s202
115952
20402
F1752
45602
F1952
s0802
102152
126002
152352
1581202
212652
245402
282782

56

1

RNV A JPUNT A JPUNE S A S T OSSP AT N PRI JPUII J

Table 9 Problem Sizes for Figure 20
Vary Width

Equations Depth = Width

400
424
450
475
a00
524
alalll
575
B0
B25
Bal
675
700
725
74l

Dof

RNV TN OSSN PSS T S U T QPSS U AT U U U

321602
3E2852
406502
453152
a0z2002
553352
BO7202
BE3552
F22A02
783752
g47B02
913952
9a2802
1054152
1128002

Equations

7.2. Runtime Description

The performance analysis of the “Cube3” workload depends greatly on
the understanding of what occurs throughout the execution of “Cube3.” This
section provides some incite to what is happening throughout the execution of
“Cube3.” This section also shows where the major performance degradation
of “Cube3” occurs.
7.2.1. Cube3 Phases

First, to understand the workload itself we generated the call graph
using Vtune. The call graph shows the various functions that “Cube3” calls
from the main procedure (Figure 21). There are twelve primary functions that
the main function calls along with a few initialization functions that create a
matrix graph and connectivity lists. Figure 21 only shows the first level of
function calls due to the complexity and abundance of function calls within
“Cubed”. Also shown is the three functions where “Cube3” spends most of its

execution time (insert, sum in, and multiply).

Create I I
Vector (ﬂ]etﬂ‘! Set Vector Complete
Create
Create o A Load
Vector I gl,_m:;:, Set Matrix I Constraints I Solve

Figure 21 Cube3 Call graph

S7

Load
Element
Data

Load

Create
Matrix

IPC interval data shows the “Cube3” phases of execution as seen in
Figure 22. This figure shows the execution of a 55x55x1 problem size. We
chose this size because the various phases are very evident throughout the
execution. Figure 20 shows a low IPC execution phase toward the end of
execution. To find out what part of the code is causing the performance

degradation Vtune allows the user to map the call graph to the source code.

3 T T T T T

T T
"S5 d35 dofl crs"

| Il |

@ 1 1 1] 1]
5] caaa 4808 EQEa caaa lagan j R=3c]=c] 14000 leoan

Instructions #% 18°&

Figure 22 55x55x1 Interval IPC

The mapping of the call graph of Figure 21 and the execution data of

Figure 22 is shown by Figure 23. There are three primary functions in which

58

“Cube3” workload spends most of its time: Create Matrix, Load Element Data,
and Solve. The poorest performing is obviously the solve phase, which will

be discussed later in the compiler optimization section.

Load
Complete

SIOSUNM // e

Create

Matrix Parameters

Create
Linear
System

Create

INIT ‘ Vector

L

L 1 i
a zoaa 4808 saaa saoa 1eaaa 12808 14008 1eaag
Instructions % 18676

Figure 23 Call graph Mapping to Interval IPC

7.2.2. Varying The Shape of Cube3 Problem

These previous graphs are of a “Cube3” with CRS storage method
using a GMRES solver. The following figures contained data generated by
“Cubed” using a GMRES solver as we vary the problem shape and the

storage method (CRS, VBR). In addition to Figure 22 (55x55x1), are two

59

graphs of which the shape has been varied from a cube to a beam to a plate.

Figure 24 uses a beam (1x45000x1) and Figure 25 uses a plate (300x1x1).

T T
".swll d45888 dofl crs"

IPC
w
I

@ I I 1 I I I
a igaa f=dalz1a) eyal=lc] 4@aaa Seea [=Yala]c] Feaa

Instructions #% 108°&

Figure 24 1x45000 Interval IPC

3 T T T

T
".Aw3EEE del dofl

T
E
In

2 L . | .
T""T‘""T"‘W " |, ; || | = |
!
& 1.5 | 4
=
Lk i
@.5 -
e 1 1 1 1 1
o 16665 2a66m EE6E 46605 SEE0E cEnEEn

Instructions % 168°6&

Figure 25 300x1x1 Interval IPC
60

IPC

IPC

IPC

L B I R 4 1 = = oW

LU 1 I) B () B)

Vary Shape - Crs

1aEaa

4EEER SEBEaE 15

BEEA

T
".o/wSS d55 dofl" —

la0oa

2EEEn

200Ea

48000 =1alselc] 25

EEE

T T
".rwBl d458688 dofl" ——

@L
w

1aEaa

ZEHEEA

el e s le]

61

4EEER SEBEaE 15

Figure 26 Vary Shapes - Interval IPC
The relative performance characteristics change depending on the shape of
the problem due to the connectivity of the nodes and elements and the
number of the nonzeros within the matrix. The 300x1x1 problem size seemed
to utilize the cache the best in the results shown in Figure 20 in the previous
section but studying the interval data it is clearly taking a lot longer than the
other two problem shapes as evidenced by Figure 26. However, by studying
the interval data graph and the call graph it seems that the time is spent in or
before the creation of the matrix execution phase. This appears to be an
anomaly and after coordinating with the author, we believe it is a problem with

the code. The other two graphs of 55x55x1 and 1x45000x1 appear to have

the same execution phases but the beam (1x45000x1) completes much faster
than the cube (55x55x1) due to the fact that the beam has more number of
nonzeros in its “A” matrix. Talking further with the author of “Cube3” the actual
performance depends on the number of nonzeros in the matrix and not the
shape. Figure 26 shows the three shapes with the same x-axis to show the
time spent completing each problem shape. Recall that these three problem
shapes have approximately the same number of equations meaning the “A”
matrices are about the same dimension but have different numbers of
nonzeros.
7.2.3. Varying Storage Techniques

Section 3.7 described various methods of storing sparse matrices (Crs
and Vbr). By varying the storage method from compressed row storage to
variable block row techniques the performance can be seen in Figure 27 to
affect the load element data phase of the “Cube3” workload. The variable
block row storage method has poor performance for these sizes mainly
because of the complexity involved in retrieving the data from the various
arrays presented in Section 3.7. For “Cube3” the data within the “A” matrix is
accessed row-wise and that is why the compressed row storage method is
the most popular implementation of sparse matrix data structures because

the data is stored row-wise.

62

IFC

IFC

T
3 H3% |dofl wbr" ———

7.2.4. Runtime Statistics

application becomes.

la@aa caaaa 206B88 488846 Saa8a caa8a Fa@aa
Instructions # 18°&
T T T T T T
"o w35 d35 dofl ocrs" —
1 1 1 1 1 1
la@aaa zeaaa 20BEa 48E8H SEa8R cEEER Faaaa

Instructions # 18°&

Figure 27 Crs and Vbr Methods 55x55x1 with Gmres Solver

The instruction mix for the compress row storage method is shown in
Figure 28. Due to the large amounts of data being manipulated the number of
loads accounts for around 20 percent of the overall instruction mix. Also as
can be seen from this data as the number of nonzeros increases (1x45000x1
to 55x55x1) the percentage of floating-point operations increases. So as the

“A” matrix becomes more dense the more floating-point intensive the

63

70%

60% -

50% -

40% -

30% A

20%

10% -

0% -

CRS Instruction Mix

Loads

Stores

m

Branches

O 1x45000x1
B 55x55x1
0300x1x1

Floating Point

Other

0 1x45000x1
B 55x55x1

17.628%
18.283%

5.168%
4.050%

15.181%
14.166%

3.858%
5.893%

58.165%
57.608%

[D300x1x1

14.984%

12.464%

14.354%

0.922%

57.276%

Figure 28 Crs Instruction Mix

The cache on the Itanium 2 should provide the best source of

performance improvement over other architectures due to the large sizes of

the caches. But to fully utilize the cache a problem size and shape must be

chosen that stresses the cache (i.e. does not fit in the cache). This makes

performance analysis difficult because depending on what a scientist is

simulating, the problem size and shape changes. Table 9 shows the cache

statistics for the three problem sizes. As shown in the table, 300x1x1 allows

the cache to perform the best because the matrix creation process seems to

be stuck allowing the cache miss rates to increase because it is accessing the

same data. The variable block row storage method results are very similar to

64

the statistics found in Figure 28 and Table 9 and thus will not be shown here
but can be found in the Appendix. Studying Table 10 helps to explain why
the IPC is lower for the other problem sizes as compared to that of the
300x1x1 problem size. The IPC is lower because the miss rates are so high
meaning that for most of the data being access a latency of 12+ cycles is
encountered because the data has to be brought in from memory. The cache
statistics reiterates that the problem size of 300x1x1 has an error as stated
before and the other two problem sizes still do not take advantage of the
caches due to their high L3 miss rates. As a conclusion some future work still
needs to be done to exercise the caches better which will be discussed the

future work section.

Table 10 Crs Cache Statistics

Cache Statistics
Crs w01 d45000 dofl w55 d55 dofl w300 d01 dofl
L1l miss rate 3.33% 3.02% 0.55%
L1l prefetch miss rate 17.10% 15.76% 17.64%
L1D miss rate 3.96% 3.86% 11.06%
L2 miss rate 3.22% 3.51% 4.77%
L2D miss rate 3.49% 3.79% 4.68%
L2]l miss rate 0.26% 0.20% 9.78%
L3 miss rate 92.33% 93.84% 8.42%
L3D miss rate 93.11% 94.30% 7.66%
Cycles/L2 data miss 380.42 352.08 129.99
Cycles/L3 data miss 388.83 364.48 1476.13

65

7.3.

Bottleneck Analysis

Using Jarp’s methodology an analysis of “Cube3” with the three

problem shapes (cube, beam, and plate) was conducted. The results of the

stall analysis are shown in Table 11. For the three shapes, the majority of the

stalls (around 80+ %) occur in the execution stage of the pipeline.

Table 11 Crs Stall Source

Crs w1 d45000 dofl wih d5h dofl wild di1 dofl

Counter Name Count Percent Count Percent Count Percent

BACK END BUBBLE ALL | 2320802441 100.00%, 6696237200 | 100 00% |8333422043] 100.00%
BE FLUSH BUBBLE ALL | 193117125 0.32% 354703907 530% [275111801 | 3.30%
BE L1D FPU BUBBLE ALL| 49003323 2.11% 112511336 1.68% | 629580214 | 7.50%
BE EXE BUBBLE ALL 1947661879 83.92% 5954594293 55.02% [7154276379| 55.66%
BE RSE BUBBLE ALL 27673791 1.19% 51767374 077% | 44776750 | 0.54%
BACK END BUBBLE FE 99367063 4 28% 220832406 3.30% | 202831524 | 2 43%

To further understand the cause of these stalls in the execution stage

of the pipeline more statistics need to be evaluated. Looking closer at the

Back-end Execution-Stage, the stalls can be broken down into more detailed

statistics by using the PMU events within the Be_exe_bubble event shown in

Table 10. The PMU can monitor what is causing the stalls within the

execution stage of the pipeline; the statistics that can be collected are:

e Back-end stalls due to general register/general register or

general register/load dependency (be_exe bubble grall),

e Back-end stalls due to floating point register/floating point

register or floating point register/load dependency

(be_exe_bubble_frall),

66

e Back-end stalls due to general register /general register
dependency,
e Stalls due to ARCR dependency, PR dependency, Cancelled
Loads, or Bank Switching (arcr_pr_cancel_bank).
These statistics are shown in Table 12. The results show that depending on
the shape of the problem (1x45000x1 to 55x55x1), more importantly number
of nonzeros, the number of stalls due to general register to load dependency
decreases and floating point to load/floating point register to floating point
register increases mainly because the number of floating-point operations

increases when there are more nonzeros within the matrix.

Table 12 Crs Execution Stage Stalls

Crs wil1_d45000_dof1 w3 _d55_dofl w300_d01_dofl
BACK_END BUBBLE_ALL 2320802441 100.00% 6696237200 | 100.00% |8333422043) 100.00%
BE_EXE_BUBELE_GRALL 969203079 41.76% 1635890701 24.43% |6344204662| 75.13%
BE_EXE_BUBBLE_FRALL 980825829 42.26% 4311046217 54.38% [2199429333| 26.39%
BE_EXE BUBBLE _GRGR 1434 0.00% 99528 0.00% 1903 0.00%
BE_EXE_BUBBLE ARCR PR_CANCEL BANK| 2892140 0.12% 5779050 0.09% 4163059 0.05%

Grouping statistics to get a better understanding of the actual stall
contributions from a global perspective give us the data shown in Table 13.
Table 13 shows the contributions to each of the main causes of stalls; Table
14 shows a breakdown of three greatest contributions of the stalls in Table
13. The maijor cause of stalls is load integer and floating point dependency
and/or floating point register floating point register dependency. However,
Table 14 also shows that the branch stalls are due mainly to a branch

misprediction bubbles (fe_bubble bubble). Some of these stalls could be

67

alleviated with a bigger branch predictor such as a two-level tournament

predictor.
Table 13 Crs Global Stall Counts
Stalls
Crs wl1_d45000_dof1 wi5_d55_dof1 w300_d01_dof1
Count " Count " Count)
D-cache stalls 1017B6R288 37 046% 1749014158 23.247% BY9746846512 B3.882%
Branch mispredict stalls 513213455 18.683% ! 929897226 12.360%: 736070519 B.742%
Instruction Miss Stalls 128795729 4689% . 312081523 4.148%F 2890265316 2647%
RSE stalls 2FEFATYT) 1.007% A1VES3IV4 0.683% 44776750 0.410%
Floating Point unit Stalls | 1029200472 37 469% 4424260202 58.005%: 2820911186 25.920%
GR Scoreboarding 1434 0.000% 99528 0.001% 1903 0.000%
Front-End Flushes 30372344 1.106% ABA30081 0.751% 435582783 0.399%
Total 2747013516 7H23E50092 10918053059
Table 14 Crs Major Stall Contributions
Counter w1 d45000 dofl wi5h 55 dofl w300 do1 dofl
Deache grall-grgr 969201645 95 238% 1635791173 93.526% 6344202759 90.960%
‘ BE_L1D_FPU_BUBBLE_L1D | 48454543 4.?62%' 113222985 8.4?4%' 630481853 9.040%
BE_FLUSH_BUBBLE_BRU 192861987 | 37 .679%| 354472948 30.120%| 275201643 37.3858%
Branch FE_BUBBLE_BUEBLE 270036171 52 617%| 483520255 52.029%) 391220995 53.150%
FE BUBBLE BRANCH 50315300 9.804% 916040230 9.851%[GFOS4787E 0.452%
EP Units BE_EXE_BUBBLE_FRALL 980525529 95 291 %[4311046217 97 441 %) 2199429333 77.721%
BE L1D FPU BUBBLE L1D | 48454843 #.709%[113222086 26559%[630481853 22.279%
7.4. Solution Techniques

“Cubed” has the ability to change the solver algorithms used to solve

the linear equations established by the finite element problem. To understand

which solver allows for the fastest solve time a comparative analysis with and

without the use of preconditioning is presented in this section. Even though

68

the various algorithms used to solve these linear systems are beyond the
scope of this work.
7.4.1. Varying Solvers

The AztecOO package in Trilinos provides various solvers as stated in
Section 2.6.3. These solvers provide different iterative algorithms that allow
convergence on the final solution of the linear system. Figure 29 shows the
various interval data from the 55x55x1 problem size varying the different
solvers. The 55x55x1 problem size is only shown because the execution
phases can be seen distinctly and the changes in the solve phase can be
determined. The results of using different solvers showed improvement only
in the time spent in the solve phase due to faster convergence and not due to
architecture performance improvements. All of the algorithms stated in
section 2.6.3 all have the same characteristics in that they all use the same
matrix-vector multiply; the only one that differed was the gmres solver which
uses dgemv as a solver, which is a fortan Blas (Basic Linear Algebra
Subprograms library used in many computer systems) function that performs
matrix-vector multiply. The rest of the algorithms use a loop kernel within the
AztecOO package of Trilinos which calculates the same matrix-vector multiply
but is written in C++. Examining the performance data when using various
solvers within AztecOO the only performance benefit is that some allow for
faster solution convergence and hence fewer iterations are executed to

converge on the final solution. The fastest performing solver is the conjugate

69

gradient method as shown in the lower graph of Figure 29. The slowest
performing is the restarted general minimal residual (gmres), which is likely a
result of the Blas libraries not being at an optimal level for the Itanium 2. The
conjugate gradient method performed the best regardless of the problem
shape as well as the Vbr storage format. Results are shown for the Vbr format
in Appendix.
7.4.2. Vary Preconditioners

In addition to the solver algorithms, another method that allows for
faster convergence on the final linear system solution is the method of matrix
preconditioning. Preconditioning the matrix involves multiplying the “A” matrix
by another matrix, which is called the precondition matrix, then that new
matrix is sent to the solver. The various preconditioning methods that can be
used by the “Cube3” workload are defined in the AztecOO solver library and
also are stated in Section 2.6.3. Figure 30 is a graph that shows the
performance of varying the preconditioners on a problem size of 55x55x1
using the conjugate gradient solver. Throughout the executions the k-step
Jacobi allowed for the fastest convergence using only one step. As seen in
Figure 30 the k-step Jacobi only spends around 1.5 billion instructions in the
solve phase as compared to no preconditioning which spends around 3 billion
instructions in the solve phase. The worst performance was observed using

the domain decomposition preconditioner, which took the longest to complete

70

(almost 30 billion instructions just in the solve phase). The Vbr results concur

with these results and can be found in the Appendix.

IPC
ET T I T

IPC IFPC IPC
T I T R R N T I R S - N7 R N T

IPC
@ W

Yary Solwers - Crs
T T T T T T T
| "o AZ gmres" — |
1 ! ! 1 1 1 1
5] z@an 4BE8 GEEE saaa 1aana 1Z@a8a 14888 16888
T T T T T T T
".oAz tfgme" ——
1 ! ! 1 1 1 1
a zZean 4088 =Y s]z]s] sPaaa 18amna 1Z@aa 14888 16888
T T T T T T T
‘ "./Az bicgstak" ——
1 ! ! 1 1 1 1
a zZ@an 4884 Y511 2REa 188mna 12888 14888 15888
T T T T T T
"./AZ cgs" ——
1 ! ! 1 1 1 1
a 2@ean 4088 Y51z 2@Ea 1@8ma 1z2@88 14888 16888
T T T T T T T
| ‘ ".oAzZ ot ——
1 ! ! 1 1 1 1
a 2@ean 4088 Y51z 2@Ea 1@8ma 1z2@88 14888 16888

Instructions % 18°&

Figure 29 Crs 55x55x1 Varying Solver Methods

71

IPC

IPC

IPC

IPC

IPC

IPC

-

L B I I) I}

AZ Cy wv=s. Preconditioners

T T T T T T T T
' ".#w33 d55 dofl AZ dom decomp" —— |
1 1 1 1 1 1 1 1
5} 5888 la8aa 15864 z2EEa8 25eaa 2a86a 25888 48888 458648
3 T T T T
5 ".AwSS d55 dofl ML Op" — |
E -
5 -
1 -
5 - -
a 1 1 1 1 1 1 1 1
5} 5888 la8aa 15864 z2EEa8 25eaa 2a86a 25888 48888 458648
3 T T T T T T T T
= ".#w55 d55 dofl AZ naone" — |
E -
5 -
1 -
= -
o] !]] !]]]
5] S88a l88aa 15864 2EEaE8 25888 2E86a 25888 4868 45868
3 T T T T T T T T
= ".#w33 d55 dofl AZ Heumann" ——— |
E -
5 -
1 —
5 - -
o] !]] !]]]
5] S88a l88aa 15864 2EEaE8 25888 2E86a 25888 4868 45868
3 T T T T T T T T
s "o w35 d535 dofl AZ 15" —
E -
5 -
1 —
5 - -
a] !]] !]]]
5} S88a l88aa 15864 2EEaa8 25888 2864 25888 dEEEA 458640
3 T T T T T T T T
s "o w33 d33 dofl A2 Jacohi' —— |
E -
5 -
1 -
.9 -
a] !]] !]]]
=] =15 151" lagaa 15088 cEBEg coBER FEEER et=g51515] 4EEEa 428EE

Instructions ¥ 1876

Figure 30 Crs 55x55x1 Varying Preconditioners with CG solver
72

7.5. Compiler Optimizations
The Itanium 2 relies mainly on the compiler to achieve performance

improvement over other architectures. The performance of the application
under study depends greatly on the compiler and the compiler optimizations
used on the application. This section of the work studies some of the benefits
of each.
7.5.1. Utilizing different Compilers

The two compilers that are available for use on the Itanium 2 at NMSU are
the Gnu Gce compiler and the Intel Icc compiler. The Gece compiler has some
built in functions that allow for performance improvement of an application.
Such compiler techniques as loop unrolling and prefetching loop data help to
improve the performance of an application. Loop unrolling is a concept that
actually unrolls the loop iterations with the conjunction of register renaming so
that the assembly code does not have any dependent instructions allowing
the loops to run in parallel which improves the overall performance of this
kernel. Prefetching loop data is a technique if supported by the architecture
that issues prefetch instructions to fetch data used in large arrays to improve
the performance of the loops. The Icc compiler does not have these
capabilities available for ia64 instructions (64-bit Itanium instructions) but
does have the capability to perform software pipelining that the Gce compiler
does not have. The technique of software pipelining is the method that a

compiler uses by taking independent instructions from each iteration of the

73

original loop and creates another loop that only contains independent
instructions with some setup and closing instructions to complete the same
process as the original loop. Figure 31 shows the performance of the problem
size of 55x55x1 when compiled with Gce with no compiler optimizations
versus the Icc compiled workload with software pipelining available as per
Jarp [30]. Figure 31 shows that there is no performance gain using the Icc
compiler versus the Gce compiler. One reason may be that the Icc compiler
was not installed correctly and is reverting to the Gcc libraries. Some future

work in this area is needed to determine if the Icc compiler is actually working

correctly.
Goo Mo Optimizaton ws Icoc Compiler with Optimization
4.3 T T T T T T
w35 d53 dofl goo"
4 F u
2.5 t— -
3 -
o E.3 -
o
T Pt 1
1.5 -
1 - -
8.5 | -
@ 1 1] 1 1 1
@ zEag 4688 151505 Soaa 1Baaa 1z@8G 14806 1c@8a
4.3 T T T T T T -
w55 d53 dofl ice"
4 F u
2.5 t— -
3 -
o B3 -
o
— > |
1.5 -
1 - -
8.5 |- -
@ 1 1] 1 1 1
@ zEag 4688 151505 Soaa 1Baaa 1z@8G 14806 1c@8a

Instructions % 18°6

Figure 31 Crs 55x55x1 Varying Gce & Icc Compilers
74

7.5.2. Loop Optimizations

The matrix vector multiplication is the primary cause of the poor
performance found in the solve phase. This is due to instruction level
dependency. Instruction level dependency is the term used when an
subsequent instruction needs the data produced from an instruction before it.
If the instruction that is needed is stalled in the pipeline because it is waiting
for data from memory then the dependent instruction is stalled as well.

Some changes to the code were needed in order to see if loop
unrolling was actually being conducted in the compiler to achieve maximum
performance of the loop. The changes to the code were implemented in the
multiply kernel of the AztecOO package (Epetra_CrsMatrix.cpp). The loop is

shown in the following:
for(i = 0; 1 < NumMyRows_; i++) {
double sum = 0.0;
for(J = 0; J < NumEntries; j++)
sum += RowValues[j] * xp[RowlIndices[j]];
yp[i] = sum;
}

We modified the code by putting a number within the looping structure
in order to recompile with loop unrolling allowing a higher level of parallelism
to be extracted in the compiler. Hard coding the number of rows
(NumMyRows) to an actual number instead of a variable allows the compiler
to know exactly how many loops to unroll whereas before it could not perform

loop unrolling because the number is not known at compile time. Once the

number is hard coded and recompiled, this will show if the compiler is able to
75

extract some parallelism through the use of loop unrolling techniques or
software pipelining. The best performance increase would be to hardcode the
number of entries per row of the matrix (NumEntries) but unfortunately this is
a variable and can not be hardcoded. The use of profile guided optimization
can perhaps help the performance of this kernel. The problem with these
optimizations is that in a real-world problem the number of loop iterations is
never known at compile time and profile guided optimizations take a lot of
time to implement because two compilations are needed, one to collect data
and one that uses the data collected. In future work, a dynamic way of
improving this loop-kernel is needed to achieve the best overall performance
improvement in the “Cube3” application. The next section shows some of the
compiler optimization results of this loop kernel.
7.5.2.1. Gcece vs. Gee Optimized

The Gce compiler allows a user to compile an application using loop
unrolling and loop prefetching. The performance improvement in the solve
phase is small but noticeable as shown in Figure 32 due to the loop unrolling
and loop prefetching optimizations. Figure 32 shows the gmres solution
interval data improvement and Figure 33 show the CG solution which only
uses the matrix-vector loop kernel of AztecOO. The runtime of the non-
optimized Gce compilation (upper graph of Figure 33) using the conjugate
gradient solver in CPU cycles was around 10 billion cycles and for the

optimized Gce compilation (lower graph of Figure 33) was around 8 billion

76

cycles. This attributes to a 20% gain of the overall execution time in the

“Cube3” application shown in Figure 33.

IFC

IFC

IPC

IFC

[I VR T B VR Y B U |

Moo W R

Yary Goo Compiler Optimization AZ gmres

T T T T T T T
"./w33 d35 dofl normal" ———

lg@aga 12848 140848 188

T T T
"./ud5 d55 dofl wnrell all" ——

ZEeae 4@EEE EEEE 2EEE la@Ea 12688 14888
Instructions % 1876

16688

Figure 32 Gee with Gmres Solver vs. Loop-Unrolling

Yary Goo Compiler Optimization AZ oy

T T
".4w33 d35 dofl normal" ———

140848

T T T
"./wE5 d55 dofl unroll all" ———

zZeaa JEEE EEAE @88 1a8@a 12888
Instructions % 18"6

Figure 33 Gecce with CG Solver vs. Loop-Unrolling

14088

77

8. CONCLUSION

The “Cube3” application proposed by Sandia National Laboratories as
a representative workload of the scientific computing proved to be a difficult
problem to study on the Itanium 2 microarchitecture. It was a difficult problem
due to the fact that the performance varies as the shape and size changes of
the problem due to the number of nonzeros within the “A” matrix and also an
error in the code was discovered and hindered results of the 300x1x1
problem size. The error is currently being studied by the author of “Cube3.”
When running “Cube3” on the Itanium 2 the only phase that consistently had
poor performance was the solve phase. The section of the code that
attributed to the poor performance of the solve phase was the matrix-vector
multiply loop kernel found in the AztecOO package in Trilinos. As the problem
size/number of nonzeros of the finite element problem increases the solve
phase dominates the performance degradation of the application. Some
studies were performed to improve the performance of this matrix-vector
multiply kernel. The compiler techniques that were implemented to improve
this kernel were:

e Adding -fprefetch-loop-arrays option in Gee
e Adding -funroll-loops option in Gece
Also, to minimize the execution time of the solve phase of the

workload the use of the conjugate gradient algorithm with a k-step Jacobi

78

preconditioner proved to be the best in conjunction with the compiler options
stated above.

In conclusion, once a technique has been implemented to help the
matrix-vector multiply improve its performance then all of the solvers within
the AztecOO package of Trilinos will improve, as well as any other solvers
which have a matrix-vector multiply loop kernel similar to that of AztecOO. If a
technique is found in the future to further improve this loop kernel then the
finite element workload will be more dependent on the architecture under
study. But at the time of this work the overall bottleneck of “Cube3” was the
loop kernel and not any of the characteristics of the Itanium 2 micro-

architecture.

79

9. FUTURE WORK

To best maximize the performance of the “Cube3” workload some
additional techniques need to be implemented to maximize the performance
of the matrix-vector loop kernel. The techniques need to focus on alleviating
some of the data dependency within the loop so that more parallelism can be
extracted allowing more instructions to be executed in parallel. This can be
achieved by performing studies only on the loop-kernel, alleviating a lot of
time involved with compiling and running “Cube3.” Some future research on
the lcc compiler is needed to see if it is implementing software pipelining
correctly, which could possibly improve this loop kernel. Also, the proposal of
additional hardware/software techniques can maybe improve the performance
as well.

Once the performance of the matrix-vector multiply has been
improved, then the architecture of the Itanium 2 needs to be re-studied to
determine how “Cube3” performs because as of now the Itanium 2
architecture has not been stressed in any of the studies conducted. Also by
running a workload of a dense matrix (all nonzeros) of different sizes can give
more incite to the performance of the cache hierarchy and what problem size
in terms of non-zeros in the matrix to choose to study the architecture to its
fullest capability.

In addition to this performance analysis and future performance

analysis studies, an analytic model needs to be implemented to help in the

80

multi-processor analytic model used by Sandia National Laboratories which
could have parameters based on the performance of a matrix-vector multiply
and the techniques that the architecture implements to maximize the
parallelism because this tends to be the most relevant performance loss as a

whole.

81

APPENDIX

Problem Size Variation Graphs —CRS

L2 Mi== Rate IPC

L3 Miss Rate

L2 Miss Rate IFPC

L3 Mi=s=s Rate

1.48

Crs-

Hidth 1 x VYarg Depth 1 = Dofl

1.46
1.44
1.42
1.4 -
1.338
1.36
1.24

T
".~IPC data" —

1.38

B.8332
B.@325
B.832
B.08315
B.821
B.@385

o, a3
B,@295
B.@a9
B.8285

". L2 Miss Rate data" —

T T
"./L2 Miss Rate data"

Crs-

&

o]

Instructions % 18°&

Hidth 28 = Mary Depth 1 = Dofl

1.7
1.26
1.25
1.24
1.23
l.22
1.21

1.2
1.1%9
1.12

T
".sIPC data"

B.@358
B.B@356
B.8354
B.@358

B.835
B.@348
B.B@346
B.@344

5.2

1@

1z

T
Lilh !

T
= Fate data’ —

=

)

g

Instructions % 1@8"6&

83

L2 Miss Rate IFC

L3 Miss Rate

L2 Miss Rate IFC

L3 Miss Rate

Cr=— Hidth 3288 x VYary Depth 1 = Dofl

T
"o IPC data" ——

a.847
|.845
a.845
a.844
A.8432
a.84z
a.841
|, 684

T T
".#L2 Mi=zs Rate data" —

|.435
B, 4
|.35
@.32
A.23
a.2
A.13
g.1
|83

1.:38
1.36
1.24
1.22

1.2
1.22
l.26

1.24

B.A37
B.A3E6
B.A33
|.8324
B.8332
|.a832
A.831

8,83
B.BE2D
|82
B.827
|.826

@.a
|.73
8.7
B.63
8.6
A.353
B.3
H.45

4 L) o 1@ 12 14
T T T T T
".-L3 Miss Rate data"
1 1 1 1 1]
4 & g i@ ie 14
Instructions % 1876
Cr=z— Mary Hidth x Depth 45 x Dofl
T T T T T
".sIFC data" i
14
T T T T
".sL2 Miss Rate data" =
1 1 1 1 1 i
4] -] i@ iz 14
T T T L h; e T
1 1]]]
4 & =) 1@ iz 14

Instructions % 1@8"e

84

L2 Miss Rate IPC

L3 Miss Rate

1.27
1.2¢8
1.25
1.24
1.22
l1.22
1.21

1.2
1.1%9
1.18

Crs-

Vary Hidth » Yary Depth x Dofl

= Square

T
".sIPC data" ——

=] =4

B.8364 T

B.8368

B.836
B.8358
B.B8356
B.8354
B.B8352

B.835

6.8
B.75
B.7
B.65
8.6
B.355
8.5

T T
".sL2 Miss Rate data" ——

6 =]

Instructions # 18"&

85

Problem Shape Variation Graphs —CRS

Crs=- Yary Hidth x Yary Depth 1 x Dofl - 181282 equations

T
".SIPC data"

IFC

S R S T I)
T
1

P P

T T
B.@846 |- ".#L2 Miss Rate data" ——

L2 Mi=ss Rate
=
=
w
o
T

D m DR EE @
[R S T [N
T

L2 Mi=s Rate

1 1 1 1 1 1
a i 2 3 4 =1 & ks
Instructions * 18"

Crs- Vary Hidth » Depth 1 = Yary Dofl - 1812862 Equations

1.85 T T T T T T T
1.8 ".sIPC data" — A

IPC
o
T

T T T
B.8d46 ".ALE2 Miss Rate data' ———— 4

L2 Miss Rate

L3 Miss Rate

Lol R R
o O U1 W0
T
1

1 1 1 1 1 1 1 1
=] 1 = 3 4 =1 -] 7z g El
Instructions % 187¢

86

L2 Miss Rate IPC

L3 Miss Rate

L2 Miss Rate IPC

L3 Miss Rate

Crs-

Hidth 48 x Depth 48 = Vary Dof

1.2615
1.261
1.2685
1.26
1.2535
1.259
1.2585
1.258
1.28575

T
".sIPC data" ——

1.257

1@

B.8357°7
B.83576
B.8357°5
B.8357°4
B.B83573
B.B83572
B.83571

B.8357

T T
".sL2 Miss Rate data" ——

B.8356%

1z

8.576 T
8.574
8.572
8.57
B.568
8,565
8.564
8.562 L

T T
".“L3 Miss Rate data" ——

1.81

Crs-

3] =]

Instructions # 1876

Hidth 288 x Vary Depth 1 = Yary Dof

1.888 |
1.2886 |
1.884 |-
1.882 |

1.8
1.798 |
1.7%6 |
1.724 |-
1.7%2 |
1.72

T
".sIPC data" ——

1z

B.8474
B.8472

8,847
B.8468
B.0466

B.o0d464

B.8462

T T
".sL2 Miss Rate data" ——

B.856

8.855
8,854
8,853
8,852
8,851
8.85
8,845
8,848
B.047
8,846 L

3] =]

Instructions # 1876

87

VBR — Statistics/Graphs

VBR Instruction Mix

70%

60% -

50% -

40% —

0 1x45000x1
B 55x55x1
0300x1x1

30% A

20% —

10% -] —

| — -
0% Loads Stores Branches Floating Point Other
‘El 1x45000x1 15.667% 6.091% 16.239% 1.090% 60.913%
W 55x55x1 16.207% 5.905% 16.081% 1.419% 60.387%
0300x1x1 15.084% 10.394% 15.151% 0.609% 58.762%

Cache Statistics
Vbr w01 d45000 dofl w55 d55 dofl w300 dO1 dofl
L1l miss rate 4.15% 4.21% 1.89%
L1l prefetch miss rate 20.28% 21.14% 21.06%
L1D miss rate 7.60% 8.98% 10.58%
L2 miss rate 3.19% 4.81% 4.60%
L2D miss rate 3.47% 5.23% 4.63%
L2l miss rate 0.15% 0.18% 1.93%
L3 miss rate 96.79% 89.38% 33.34%
L3D miss rate 97.34% 89.88% 31.59%
Cycles/L2 data miss 395.28 303.00 183.99
Cycles/L3 data miss 398.62 330.55 543.37

88

Vhr w1 d45000 dofl w2 d55 dofl w300 di1 dofl
Counter Name Count Percent Count Percent Count Percent
BACK END BUBBLE ALL 9882892235|100.00% | 39673467563 100.00% | 25399976359 100.00%
BE FLUSH BUBELE ALL 1295178321 13.11% | 3693153357 | 9.31% | 2223023294 | 8.75%
BE L1D FFU BUBBLE ALL 136588649 | 1.38% | 593116712 | 1.49% | 888702138 | 3.50%
BE EXE BUBBLE ALL 7774087202 | 75.66% [33295543901| 53.02% [20783644887| 51.53%
BE RSE BUBBLE ALL 2009631049 | 2.12% [690115968 | 1.74% | 397920517 | 1.57%
BACK END BUBBLE FE 451072683 | 4.56% [1356195974 | 3.42% | 841363555 | 3.31%
BACK END BUBELE ALL 9882892235[100.00% | 39673467563 [100.00% | 25399976359 100.00% | 100.00%
BE EXE BUBBLE GRALL 5563880615] 56.30% |20031626715] 50.49% [14404876672| 56.71% | S6.71%
BE EXE BUBBLE FRALL 2214576925] 22 41% | 13251213935] 33 40% | 6395484604 | 25.18% | 25.18%
i BE EXE BUBBLE GRGR 1414 0.00% 106328 0.00% 2062 0.00% 0.00%
BE EXE BUBBLE ARCR PR CANCEL BANK | 2712180 0.03% 5603616 0.01% 4162439 0.02% 0.02%
Stalls
Vs w01_d45000_dofl = w55_d55_dof1 w300_d01_dof1
Count % Count " Count £
D-cache stalls S700956342 41.180% 20624172455 37 . 496% 15291064411 | 45 747 %
Branch mispredict stalls 4783357186 34.660% 17543891379 31.8596% 8995505779 25.915%
Instruction Miss Stalls 584180606 4.220%: 1719446663 3.126% 11103459858 3.322%
RSE stalls 209631049 1.514%) B90115965 1.255%F 397920517 1.190%
Floating Point unit Stalls | 2351654066 16.987 % 13843866003 25.169% 7281674405 21 785%
GR Scoreboarding 1414 0.000% 106328 0.000% 2062 0.000%
Front-End Flushes 1991445808 1.438% 632475321 1.059%F 3480877730 1.041%
Total 13843925471 S500407 4117 33425600940
Counter w1 d45000 dofl whh d55 dofl w300 do1 dofl
Deache grall-grgr SAE3879201 97 A96%[20031520387 97.126%| 14404874610 94.205%
‘ BE L10 FPU BUBBLE L1D | 137077141 2.404%[5026520880 2874%[BBE180801 5795%
BE_FLUSH_BUBELE_BRU 1283386628 265.746% | 3700376108 24.092%| 2222523236 24 704%
Branch |FE_BUBBLE_BUBBLE 3216402404 57.031%/[12947456014 73.800%[5235439269 £9.310%
FE BUBBLE BRANCH 208568154 5.222% [BoEDEE257 | 5.108%[538543274 5.0986%
EP Units BE_EXE_BUBBLE_FRALL Z2M457E926 94 171%[13261213936 96.719%| B395484604 57 .830%
- r
BE_L1D_FPU BUBBLE L1D | 137077141 5829%| &92652068 4.281%| BB6189801 12.170%

89

Yary Soluwers - Vhr

IPC
@ o= m o w

IPC
L VST R

IFPC
@M o= U omoa o

IPC
T BT R N

IPC
@ W= oW

T T T T T
".FAZ tfgme" — |
1 1 1 1 1 1
5] la@a8a8 coaaa jepu =1z 1] 4BBEE SoaEa [=sTs1m] s =10
T T T T T T
L‘LH‘ ", oBZ bicgstab" ——
1 1 1 1 1 1
5} laaaa caaaa 2a86a 4a866 Seaaa EEBEA Faaaa
T T T T T
w 'V AAE gmres" ——
1 1 1 1 1 1
5} 18884 ceaga 2eaga 48680 Seega cEaEaEa saaga
T T T T T T
W-N’ ".#AZ cgs" —
T " T T + T T T T " T T Y .
1 1 1 1 1 1
a 1B@88 ZaaaEa jegs]=]z1] 40888 SeaEa =5]=1z]s] Foa8a
T T T T T T
"o AHE cg" —
1 1 1 1 1 1
a 1B@88 ZaaaEa jegs]=]z1] 40888 SeaEa =5]=1z]s] Foa8a

Instructions % 18°&

90

IPC

IPC

IPC

IPC

IPC

IPC

-

LB) B 4 I i L B B 4 I I I i) L B B 4 I 1 I i) L N B 4 I L)) L B I I) I}

@ o o= Mo

Instructions ¥ 1876

91

AZ oy vws. Preconditioners
T T T T T T T
v W3S d5353 dofl AZ dom decompg" _
. L , 4
1 1 1 1 1 1 1 1
5] looaa =3=lsls] JEEEA 40086 SEEER SHOGEA FoaRg 200aa SB0EA
T T T T T T T
".sw55 d535 dofl ML Ogt
, : i R . -
1 1 1 1 1 1 1 1
5] looaa =3=lsls] JEEEA 40086 SEEER SHOGEA FoaRg 200aa SB0EA
T T T T T T T T
".#w55 d55 dofl AZ naone" —
1] 1 1] 1 1 1
5] la6Gaa ZHEEE FEEEE 400R6 SHEEA EHEEA Eslssle] S0G0EA QEEEA
T T T T T T T T
".#w33 d55 dofl AZ Heumann" ———
1] 1 1] 1 1 1
5] la6Gaa ZHEEE FEEEE 400R6 SHEEA EHEEA Eslssle] S0G0EA QEEEA
T T T T T T T
"o w33 d3T3 dofl AZ 15" —
1] 1 1 | 1 1
5] la6aa 2HEEE FEEEE 40886 SHEEE EEHEEA Rslssle] S0O0Ea SEEEA
T T T T T T T T
' "o w33 d33 dofl A2 Jacohi' —— |
1] 1 1 1 1 1
5] la0aa =3s1sicle] FEEEA 40886 SHEER EHEEA Joaag 20EEa QEHEA

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

9]

[10]

[11]

[12]

“Supercomputer Top 500,” [online document], 2004 Nov. 1, [accessed
2004 Feb 26], Available HTTP:
http://www.top500.org/lists/plists.php?Y=2004&M=11

J. Pfeiffer, “The Memory Hierarchy,” [online document], 2005 Apr. 1,
[accessed 2005 May 10], Available HTTP:
http://www.cs.nmsu.edu/~pfeiffer/classes/473/notes/memhierarchy.html

G. Griem, et al. , “Identifying Performance Bottlenecks on Modern
Microarchitectures using an Adaptable Probe”, in Proceedings Parallel
and Distributed Processing Symposium “04, 2004, pp. 255.

Cameron McNairy and Don Soltis, “Itanium 2 Processor
Microarchitecture,” IEEE Micro, vol. 23, issue 2, pp 44-55, 2003

“Itanium 2 Reference Manual for Software Development and
Optimization,” [online document], 2004 May 1, [accessed 2004 June
10], Available HTTP:
http://www.intel.com/design/itanium2/manuals/251110.htm

‘HP PERFMON,” [online document], 2004 Jan. 1, [accessed 2004 Feb
10], Available HTTP: http://www.hpl.hp.com/research/linux/perfmon/

“Intel Vtune,” [online document], 2005 Jan. 1, [accessed 2005 Mar 1],
Available HTTP: http://www.intel.com/software/products/vtune/

M. A. Heroux, et al., “An overview of Trilinos,” Technical Report
SAND2003-2927, Sandia National Laboratories, 2003.

M. A. Heroux, M. Sala, and D. Day, “Trilinos 4.0 tutorial,” Technical
Report SAND2 0 0 5 - 6 3 INatipBahidaboratories, 2004.

M. A. Heroux, “Trilinos Overview,” Proceedings of the Eighth Copper
Mountain Conference on Iterative Methods, Copper Mountain, CO.,
March 28 — April 2, 2004

M. A. Heroux and J. M. Willenbring, “Trilinos Users Guide,” Technical
Report SAND2003-2952, Sandia National Laboratories, 2003.

G. P. Nikishkov, “Introduction to the Finite Element Method,” [online
document], 2004 Jan. 1, [accessed 2005 Mar 15], Available HTTP:
http://www.u-aizu.ac.jp/~niki/feminstr/introfem/introfem.html

92

http://www.top500.org/lists/plists.php?Y=2004&M=11
http://www.cs.nmsu.edu/%7Epfeiffer/classes/473/notes/memhierarchy.html
http://www.intel.com/design/itanium2/manuals/251110.htm
http://www.hpl.hp.com/research/linux/perfmon/
http://www.intel.com/software/products/vtune/
http://www.u-aizu.ac.jp/%7Eniki/feminstr/introfem/introfem.html

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

Y. Saad, lterative Methods for Sparse Linear Systems, [online
document], 15! edition, 1996, [accessed 2005 Feb 10], Available HTTP:
http://www-users.cs.umn.edu/~saad/books.html

O. Ural, Finite Element Method: Basic Concepts and Applications, New
York, Intext Educational Publishers, 1973

D. J. Dawe, Matrix and Finite Element Displacement Analysis of
Structures, New York, Oxford University Press, 1984

N. M. Baran, Finite Element Analysis on Microcomputers, New York,
McGraw-Hill Book Company, 1988

M. A. Heroux “AztecOO users guide,” [online document], Technical
Report SAND2004-3796, 2004 July 1, [accessed 2005 Mar 30],
Available HTTP:
http://software.sandia.gov/Trilinos/packages/aztecoo/AztecOOUserGuid

e.pdf

“Sparse Matrix Storage schemes,” [online document], 2003 Jan. 1,
[accessed 2005 March 17], Available HTTP:
http://www.sun.com/products-n-solutions/hardware/docs/html/817-
0086-10/prog-sparse-support.html

V. E. Taylor, “Sparse Matrix Computations: Implications for Cache
Designs,” in Proceedings of the 1992 ACM/IEEE conference on
Supercomputing, December 1992.

O. Temam, W. Jalby, “Characterizing the Behavior of Sparse
Algorithms on Caches,” Proceedings of the 1992 ACM/IEEE conference
on Supercomputing, December 1992.

L.M. Napolitano Jr., “A Computer Architecture for Dynamic Finite
Element Analysis,” in Proceedings of the 13™ annual international
symposium on Computer Architecture, 1986.

M. W. Berry, “Scientific Workload Characterization by Loop-Based
Analysis,” ACM SIGMETRICS Performance Evaluation Review, vol. 19,
issue 3, 1992, pp. 17-29

M. Christon, “A Vectorized 3-D Finite Element Model for Transient
Simulation of Two-Phase Heat Transport with Phase Transformation
and a Moving Interface,” in Proceedings Supercomputing ‘90, 1990, pp.
436-445.

93

http://www-users.cs.umn.edu/%7Esaad/books.html
http://software.sandia.gov/Trilinos/packages/aztecoo/AztecOOUserGuide.pdf
http://software.sandia.gov/Trilinos/packages/aztecoo/AztecOOUserGuide.pdf
http://www.sun.com/products-n-solutions/hardware/docs/html/817-0086-10/prog-sparse-support.html
http://www.sun.com/products-n-solutions/hardware/docs/html/817-0086-10/prog-sparse-support.html

[24]

[25]

[26]

[27]

[28]

[29]

[30]

V. E. Taylor and A. Ranade, “Three-Dimensional Finite-Element
Analyses: Implications for Computer Architectures,” in Proceedings
Supercomputer ‘91, 1991, pp. 786-795.

R. Vuduc, et al. , “Performance Optimizations and Bounds for Sparse
Matrix-Vector Multiply,” in Proceedings Supercomputing ‘02, 2002, pp.
26

A. Purkayastha, et al. , “Performance Characteristics of Dual-Processor
HPC Cluster Nodes Based on 64-bit Commodity Processors,” [online
document], 2004 Jan. 1, [accessed 2005 May 10], Available HTTP:
http://www.tacc.utexas.edu/publications/performancehpcclusternodes.p
df

D. Bradley, et al., “Supercomputer Workload Decomposition and
Analysis,” In Proceedings Supercomputing ‘91, 1991, pp. 458-467.

Alan Williams, “Cube3 Description,” unpublished article, 2004

Severe Jarp, “A Methodology for using Itanium 2 Performance Counters
for Bottleneck Analysis,” [online document], 2002 Jan. 1, [accessed
2004 Mar 20], Available HTTP:

http://www.gelato.org/pdf/Performance counters _final.pdf

Severe Jarp, “Searching for optimal performance on PF/Linux,” [online
document], 2002 Jan. 1, [accessed 2005 May 20], Available HTTP:
http://www.gelato.org/pdf/Compiler_options_final.pdf

94

http://www.tacc.utexas.edu/publications/performancehpcclusternodes.pdf
http://www.tacc.utexas.edu/publications/performancehpcclusternodes.pdf
http://www.gelato.org/pdf/Performance_counters_final.pdf
http://www.gelato.org/pdf/Compiler_options_final.pdf

